Development of a Performant
Defragmentation Process for a Robotic
Tape Library within the CASTOR HSM

by
Felix Ehm

A thesis submitted in partial ful lIment of the requirements for the degree
Diplom-Informatiker (Fachhochschule)

at the

University of Applied Sciences Wiesbaden
Academic Unit of Information Technology

Examiner at academy: Prof. Dr. Detlef Richter
Examiner at company: Dr. Sebastien Ponce
Supervisor: German Cancio-Melio

Company: CERN, European Organisation for Nuclear Research

Erklrung

Hiermit erklare ich an Eides statt, dass ich die vorliegenel Diplomarbeit selbstandig
und nur unter Verwendung der angegebenen Quellen und Hilfgtel verfasst habe.

Ort, Datum Unterschrift Diplomand

Erkkrung zur Verbreitungsform

Hiermit erklare ich mein Einversiandnis mit den im folgerden aufgefahrten Verbrei-
tungsformen dieser Diplomarbeit:

Verbreitungsform ja nein
Einstellung der Arbeit in die Bibliothek der FHW X
Vem entlichung des Titels der Arbeit im Internet X

Ver® entlichung der Arbeit im Internet X

Ort, Datum Unterschrift Diplomand

"We see only what we know."
Johann Wolfgang von Goethe (1749-1832) German poet.

Abstract

Modern magnetic tape technology is used at the European Ceatfor Nuclear Re-
search [CERN] for permanent storage of data from high energiysics experiments.
CERN is the largest particle physics institute in the world,and with the start of
data taking from the Large Hardon Collider [LHC] experimert in 2008 the technical
infrastructure for a predicted fteen petabyes per year of dta has to be provided.
To ensure high data integrity for the unique particle eventswhich will be used for
analysis in the following decades, the development and m&nance of storage is
vital.

Several areas for enhancement within the CERN developed HSyistem, CASTOR
(Cern Advanced STORage Manager), were discovered duringethiesting phase of
this technical infrastructure. In particular the fragmentation of les over several
tapes and the e ect of this problem on le retrieval time are gni cant issues and
the main topic of this thesis.

In this thesis an analysis of these problems is made. Theirlgtons, in terms of
performance improvements applicable to the robotic tapeliaries currently used at
CERN, are elaborated upon and presented. The implementatioof a new defrag-
mentation process is presented.

Contents

I Introduction | 1
hi Thesisovendel. 4
o Stucture of this Document . . . oo 4
h.3 Validation of this Documerk o\ 5

bo Generalovenviel 10
boi Diskservels. 11
boo Tapelibrarieb. 13
b23 Technical Informatioh 16

ba Architecturd 22
|2.3..’L_1:h.e_C_omp.o.n.enls 23
D32 The Central Servie®s . . . o oo oo 25
IZ.&.S_Ih.e_Sla.g.er_Lo.g]c 26
b3a TheRecallofFildso 27

Contents

B2 The Reasonsin Detdil 37
4 The old Repack | a1

b1 owoductio a1

W2 AMCHHECIINd . . o o o o oo 42
|5 Analysis and Design for a new Repack | 45

B Limitationl 45

|5_LR.E.Q.LJ1I’_&[I].&DJS 49
lb_Alternative Solutions | 51

b4 conclusioh 53
ue_nemmm_' 55
1 usecasbs 55

Contents

IA_Rﬂna.ck_QIass_D.iagLam_l 103

|B_Repa.ck_5_equ.enge_D_iagLa.m_| 105

|Q Stager Catalogue Schema | 107

D_cD Contents | 109

Contents

111

116

116

List of Figures

List of Figures

Vi

Chapter 1
Introduction

The European Centre for Nuclear Research [CERN] is the lagjeinstitute for
nuclear physics in the world. Since the 1950s fundamentalsearch in this eld of
activity has been conducted. Not only has this research inenced the basic pillars
of science, but our daily life has been a ected by the technmjical developed for the
experiments. The World Wide Web [WWW], initially used to fadlitate the sharing
and of data and information among researchers, was one of sketechnologies rst
presented in 1991 by Tim Berners-Leé&l[1].

Todays e ords greatly exceed technical dimensions of thosarlier experiments. The
plans for a new generation of experiment facilities were dded at the end of the
1980s. The Large Hadron Collider [LHC] will become the workl largest particle
accelerator. It is being built in a circular tunnel, 27 kiloneters in circumference,
and buried around 100 to 120 meters underground. It straddiethe Swiss and
French borders on the outskirts of Geneva.

Its purpose is to accelerate particles up to slightly belowghtspeed and force them
to collide in one of the four High Energy Physics [HEP] experients ALICE (A

Large lon Collider Experiment), ATLAS (A Toroidal LHC Appar atuS), LHCb

(LHC study of Charge Parity) and CMS (Compact Muon Solenoid) Each target
at di erent eld of nuclear physics and, like LHC, are currenly being constructed.

1

Chapter 1. Introduction

Figure [shows the arragement of these experiments at thélC tunnel.

a
=

— LHC - B CERN
T,’I"!‘-i.;PO'nt 8

Figure 1.1: lllustration of the LHC and the four experiments

With the start of the experiments in 2007 / 2008 a large amounbf data has
to be managed. After Itering the raw data from about 40 million particle

collisions per second from the detectors, between 100 andOQOmegabytes per
second has to be stored permanently. Running the experimsnior seven months a
year results in about 15 petabytes of permanent storage racement [2] [3] each year.

The Information Technology Department [IT-DEP] at CERN is responsible for pro-
viding this storage and analysis infrastructure. The IT-DEP develops in-house solu-
tions if commercial product do not exist. But not only storirg this information for

2

Chapter 1. Introduction

later analysis is important: the data integrity of the resuls also has to be ensured
for the subsequent decades, as well. For this, magnetic tapechnology has been
choosen.

Since the introduction of computers at CERN, magnetic tapeds been used to store
data (see Figure[IR?). They have been found to be a reliabledagheap solution.

Tape libraries organise tapes and provide a robotic contrahechanism to load them

into tape drives. They are very expensive and reading datadim tape takes much

more time than from disk, but compared to a disk solution forlte same space, they
are cheaper. Disks are faster in access times, but need pgweoduces heat and are
more expensive in megabytes per cost unit.

However, tapes have to be copied from time to time to other tags to prevent data

loss. The reasons for which are presented in this thesis. 8et areas for enhance-
ments to this process motivates us to deal with this topic.

Figure 1.2: The CDC3800 used in 1967 at CERN to process the Ssvelection

Chapter 1. Introduction

1.1 Thesis Overview

This thesis has been developed over a six months period at CERvith a preceding
internship of three months. Its aim is to describe a subset d¢ifie problems related
to tape storage management for robotic tape libraries used &ERN and to nd
suitable, performant solutions for them. Speci cally the dea of defragmentation of
les stored on tape will be the main subject of this thesis.

The following are the key goals of the thesis:

Analysis of the current system
Evaluation of available methods of le defragmentation
Implementation of a new system calletRepack II

Elaborate on new possibilities to optimise tape related aweities

1.2 Structure of this Document

This section will give an overview of this document's sequeal structure. The
CASTOR project will be described briey in Chapter[2, its higdory presented and
the current architecture will be given. The interaction of is main components
is explained by describing the steps to store/retrieve lego/from the robotic
tape library. This introduction to its functionality is necessary to understand the
developments, which will be presented later in this thesis.

Chapter[3 will show how this thesis is related to the topic "Rpack”. An analysis of
the implementation is provided in Chapteil#. It will be conalided in Chapter[® that
the current system is not optimal and does not satisfy the regrements presented
in Section[®:2 for CASTOR.

Chapter 1. Introduction

Alternative solutions will be researched in Chapteid6, whit conclude that the
development of a new system is unavoidable and has to be avbie

The design and implementation of a new application will, in Gapter [@, be de-
scribed in depth, focusing on structural design decision@ possible alternatives.
Encountered problems, as well as ways to overcome them wit Imentioned.

In Chapter @ new considerations and partial solutions for dpnising state-of art
functionality in CASTOR will be presented.

At the end of this document, a personal evaluation will be gen to conclude the
results. and discuss the potential future developments.

1.3 Validation of this Document

The validation of this document is based on the CASTOR Il pragct. Changes in the
architecture have in uence on the presented developments@have to be considered.

Chapter 1. Introduction

1.4 Acknowledgement

| am deeply indebted to Professor Dr. D.Richter, Universityof Applied Sciences
Wiesbaden, whose help, personal guidance and encouragentes provided the
basis for the present thesis.

My sincere thanks to Dr. Sebastien Ponce, CERN IT-FIO-FD, amh Dr. Giuseppe
Lo Presti, CERN IT-FIO-FD for their vital support, construc tive comments and
ideas.

During this work | have collaborated with many colleagues fowhom | have great
regard, and | wish to extend my warmest thanks to all those whbave supported
me in my work at the CERN IT Department. In particular | would like to thank
Dr. Alasdair Earl and Dennis Waldron for their language supgrt.

| warmly thank Professor Dr. D.Eversheim, University BonnDepartment of Physics
and Astronomy Faculty of Mathematics and Science, for his lgand advice.

Special thanks to Anja Schmidt-Amelung, Anna-Carol Burtaf Angela Bray, Ju-
dith Naef, Christian Szczensny for their guidance and distction in non enjoyable
moments.

| owe my loving thanks to my family, especially to my parents @ristoph and
Gabriele Ehm. Without their encouragement, support and paence throughout my
education and studies | would have not been able to nish thisvork.

Geneve, Switzerland, August 2006
Felix Ehm

Chapter 1. Introduction

1.5 Prerequisites

To fully understand the technologies and elds this thesis &lds upon, readers
should be familiar with modern storage and network technofpes such as servers,
clustering and grid computing. This document contains furtonality descriptions
based on C++ and SQL (Structured Query Language) code extrés It is assumed,
that the reader is acquainted with these as well as object entated programming
paradigms such as C++. Common technology will be describedly brie y, while
CERN and project speci c areas are discussed in detail. Laten this thesis common
terminologies with reference to relational databases aresed and described only
briey.

The target audience for this document are developers in thield and also
newcomers to the CASTOR software development team.

Readers should be familiar with modern software developmteparadigms, such as
Software Design Patterns. A wide variety of such patterns Wibe mentioned in this
document, and even though the pattern's basic meaning willebparaphrased, there
will not be an in depth description.

When new terms are rst introduced, they are printed'Cursive'. Words that are
'‘Bold' are such to emphasise their importance.

Citations are formatted in the following way: [3]. The numbe in the citation refer
to the corresponding bibliography at the end of this documenif the bibliography
entry is an website, the date indicate the last visit.

Wherever "he" and "his" is used in this document, both gender are addressed.

Chapter 1. Introduction

Chapter 2
The Castor Project

The CASTOR (CERN Advanced Storage Manager) project is a hiachial storage
management system [HSM] developed at CERN to provide a stg® service for
all physics data. Files can be stored, listed, retrieved andccessed in CASTOR
using command line tools or applications built on top of the RIO (Remote File
Input/Output).

These les may be migrated between front-end disk and backie tape storage.
The CERN Data Recording Service [CDR] uses CASTOR to transpiodata from
the experiment areas to the central storage. CASTOR is comtiiously enhanced for
the LHC experiments and, as such, has been integrated with i@rtechnologies.
Currently CASTOR manages over 50 million les representingabout 5 petabytes
of data. The future requirements estimate CERN will need ahd 15 petabytes
per year of storage with an input of 4 gigabytes per second [@&} while running
experiments. It also has to cope with about 30.000 concuriterle requests with
about 1 million les on disk [4].

Since CERN is not able to manage and provide all data storagequired by the
experiments on site, external institutes in 29 countries er additional storage and
CPU resources. These are classied into tiers related to tmestorage and CPU
capacity. The TierO (CERN) does the data acquisition, primey storage and the

9

Chapter 2. The Castor Project

initial processing prior to distribution to the Tierl sites. Currently, 11 institutes in
Tierl are connected to CERN, and to each other, via an opticarivate network.
Another 40-50 institutes in the Tier2 zone retrieve data fron Tierl sites via the
internet. Tierl sites also mainly use CASTOR as their storagsolution.

Figure 2.1: Illustration of data transport between Tier zoes

2.1 History

CASTOR is an evolution of SHIFT (Scalable Heterogeneous kegrated FaciliTy)
started in the early 1990s. Its architecture was developeadhd introduced in 1999 to
address the immediate needs of the NA4BI[6] and COMPASS [5pexrments and
also to provide a base that would scale to meet the LHC requiments. Increasing
storage resources lead to a revision of the architecture i®@3. With clusters [7]
of 100s of disk and tape servers, the automated storage maeaggnt faced similar
problems to CPU clusters management. The idea was to createstorage resource
sharing facility consisting of a plugable framework rathethan total solution.

2.2 General Overview

This Chapter gives an short introduction of the HSM conceptrd how it is realized
from the hardware point of view for CASTOR at CERN.

10

Chapter 2. The Castor Project

As seen in FigurdZ]2 user data is copied rst from the user m@srce to disk servers
(front-end) and secondly copied to tape (migrated) in a tap&brary (back-end). This
idea of 'bu ering' data allows the system to optimise the dik to tape copy process
by bundling data before writing to tape. This is the same wayHhat the user gets
a le from CASTOR. Data is copied from tape to disk (recalled)and then to the
users resource.

Users
ST
NSNS N VT

Disk Serverqd
(Front-End

Tape Libraried
(Back-End

CASTOR Hierachial Storage Manager

Figure 2.2: Data storage in CASTOR HSM

2.2.1 Disk Servers

Disk servers are a form of disk storage that hosts les on a wedrk available
resource. They do not need to be equipped with high-end CPUubmust have
enough disks and the ability to sustain high 1/0O load to suppd a large amount of
data.
CurrenEly there are about 200 disk servers installed in the @nputer Centre at
CERN

IStatus from August 2006

, used by CASTOR. This number is going to be enlarged by anoth&50

11

Chapter 2. The Castor Project

by the end of 2006. In total, about 10.000 disks in 350 disk sers are going to
o er about 7 petabytes of native space. They are connectedaviGigabit Ethernet
technology which allow a theoretical input/output transfe speed of 200 megabytes
per second [MB/s] . In production, this provides 70 MB/s on agrage and 80-100
MB/s peak. Each disk server provides up to ve terabytes oveseveral le systems.
Typically each system has two RAID[[B] controllers that ensie high data integrity
by replicate data among 12 drives, which are con gured as twsix disk RAID-5
arrays.

This huge number of machines is managed by Quattor which istinduced in
Section[ZZB.

Figure [Z3 shows the network in/output of the CASTOR disk serer cluster
monitored by LemonZZB during the last ye& Massive test scenarios during the
IT Data Challenge [ITDC][9] in March, April and May showed that CASTOR and
the underlying disk servers can already deal with data inputates up to 2.2GB/sec.

Network utilization - last year

2.0 G {

R

AFHILI0 TA0L A (e0ldyy

1

|

I S NIRRT | |
! H I A L

) Wil H AL AR I ﬁ]
PN TV L U |
Sep Oct Mov Dec Jan Feb Mar Apr May Jun Jul Aug

W ethd in aver: 201, 22M max: 2222.68M min: 0,00M Curr: 0. OEM
W ethd out aver: 213, 29M max:1982. 12 min: 0.00M cure: 0. 01K

Bytes/ s

Figure 2.3: Disk server network utilisation over one year pied

2August 2005 to August 2006

12

Chapter 2. The Castor Project

l deded

s
VAl \\\II

\

Figure 2.4: Rack with disk servers installed at CERN, Augus2006
2.2.2 Tape Libraries

At the moment CERN uses four Powderhorn 9310 robotic tape liaries from
StorageTek [STK] placed for disaster planning reasons in éwdi erent buildings.

Each library has 22 9940B tape drives and space for up to 6,0@pes. This gives
a maximum total storage capacity of 600-1,200 terabytes. Asientioned in the
introduction, CASTOR has to store about 15 petabytes per yeawith a troughput

of 4 GB/s. To ful ll these needs in the near future, the latestrobotic tape library

generation from IBM (IBM 3484) and STK (STK SL8500) were instlled in May
2006.

Both are based a modular library concept and are easily extable. The STK

SL5800 system has the highest expansion potential with a pilsle storage capacity
of 120 petabytes when using 300,000 tapes with 2,048 tapevds. By using four
‘handbots' per module STK ensures the quick loading of tap@to a drive and high
fail-safeness (redundant handbots). It can be equipped Wit9940, 9840, SDLT,
LTO or T10000 tape drives in any mixture [ID].

The IBM 3484 library has a maximum capacity of 3.1 petabytesative capacity

when using 6,260 tape cartridges with 192 tape drives. As Wwels STK, IBM

13

Chapter 2. The Castor Project

prevents failures by having (only) two robotic arms in the rte of 'accessorsi[11].
CurrentIyH the IBM library is installed in this con guration, whereas the STK
library is installed with 5 modules containing around 10,00 storage slots with 5
petabytes of data and 64 drives[[12]. In both cases, drivescamedia types may
be changed to increase the total capacity. The presented gpeation refers to a
con guration with LTO-3 (Linear Tape Open, 3rd generation)tapes.

For each tape drive in both libraries, dedicated servers (pee servers) deal with the
copy process to tape. These are not vendor specic and eachhazonnect to any
drive via bre channel technology, which supports data transfer rates up to 400
MB/s. Tests were successful and both now run in production. fle scenario report
for 2007 concludes that they are both candidates for data séces, since the nal
architecture is not yet decided[[I2]. From the results, andufure prospects of tape
development, one may assume that the STK solution is to be gegred, because
its tape media is re-usable for the next generation of drivgd terabyte/tape with
estimated 200 MB/s recording speedTl2]).

Independent from this decision, which is to be taken soon, ¢hestimated total tape
space requirement at CERN is 18 petabytes. This has to be ia#ied and tested
before the experiments commence.

Figure [Z3 is the plot from the summon network in/output of tgpe servers during
the last year, by LemonZZ1B. Conspicious is again the higbad during the ITDC
tests from March to May where input rates of up to 1.5GB/sec we reached.

3Status of installation : July 2006

14

Chapter 2. The Castor Project

Network utilization - last year

[y
Tt

| 1 |
||“|wfl I| i

X :] Al gl

i Rt U oA A AR A

Sep Oct Mow Dec Jan Feb Mar Apr May Jun Jul

W ethd in aver: 295 14M max: 41584, 80M min: A7, 44M Curr: 354, 37M
W ethd out aver: 95, 78M max: 234,93 min: 11.03M curr: 118, 48M

AFHILI0 TA0L A (e0ldyy

1.0 ¢ W
I
|
{

Bytes/ s

0.0

Figure 2.5: Tape server network utilisation over the last yar

Figure 2.6: The STK SL8500 tape library installed at CERN, Agust 2006

15

Chapter 2. The Castor Project

Figure 2.7: The IBM 3584 tape library installed at CERN, Augst 2006

2.2.3 Technical Information

This Section explains some tools and technology used thrdwgit the CASTOR I
project. It is important to understand their usage and the asgantages for CASTOR
llas this is necessaryto understand the decisions taken irh@pter[4. However, their
full details are outside the scope of this thesis and are thefore discussed brie y.

The Quattor Administration Tool

The Lemon Tool

The Distributed Logging Facility

The Umbrello UML Designer
Framework for Multithreaded Daemons

Services and Converters

16

Chapter 2. The Castor Project

The Quattor Administration Tool

Quattor is a CERN developed system administration toolkitdr installing/updating
software packages on clusters and farms, as well as for camrigg/managing them
[13]. Currently around 3900 machines at CERN are managed byu&tor.

They are organised in clusters, subclusters and nodes, whezach node can be
assigned a previously speci ed pro le. The pro les containnformation such as soft-
ware packages (and version numbers) as well as network reltcon guration (e.g.
domainname). Since the computers at CERN have a great varyedf functionality
(analysis of data, mail, storage,etc.) the number of pro Ig is about 5150, although
currently only 3900 machines are installed.

This tool allows service managers and system administratoito add/remove the
machine easily to/from a cluster, or redeploy it for anothepurpose [14]

The Lemon Tool

The Lemon (LHC Era Monitoring) tool is a client-server monibring system used
to retrieve and present monitoring information through a wb-based interface [15] .
Each machine has di erent sensors, which collect data andpert it to the Lemon
server. The Lemon server stores it in a measurement reposytoThis enables the
system administrators to see if a machine has a problem e.gfective power supply
or crashed hard disk. Furthermore, it provides the history forecorded values from
the sensors, from which plots can be created [16] [15]. Theent is installed on every
machine at CERN and is therefore, in every Quattor pro le (se Section 2.2.3).

The Distributed Logging Facility

The "Distributed Logging Facility" [DLF] is designed for centrally logging messages
and accounting information from CASTOR | & Il services/faclities in a relational
database. The framework consists of a DLF server daemon agfias a centralised
collector of log messages; a client API for writing log megges; and a web interface
for retrieving the messages once they have been stored in tteabase. The message

17

Chapter 2. The Castor Project

itself can be assigned to one of ten di erent severity levels

The DLF framework was completely re-written in 2006 to addies issues of data
management, scalability and recoverability within the nurerous framework compo-
nents. As a result, the server now has the capability to hanell2,500 messages per
second with an average of ve parameters each (3.75 millioows of data every ve
minutes).

The client API is asynchronous. This means that the client gplications do not
have to wait for the DLF server to acknowledge receipt of a mesge and can con-
tinue normal functionality unhindered by any DLF server rehted issues or network
problems.

The DLF server itself is essentially a memory cache, whichta@s a gateway between
the DLF clients and a relational database. The internal cad) or queue, has the
capacity to store a default 250,000 messages pending datsdansertion.

The Umbrello UML Modeller

The "Umbrello UML Modeller" [Umbrello] is an open source soivare project to
design Uni ed Modelling Language [UML] diagrams for Linux perating systems
[17]. These diagrams are highly recommended for structugrand documentation
during the development of new applications. Umbrello usedh¢ XML Metadata
Interchange [XMI] speci cation to store the information alout the designed objects.
For the CASTOR Il project the following diagrams are used angbresented in this
document:

Use cases

Class diagrams
Activity diagrams
State diagrams
Sequence diagrams

18

Chapter 2. The Castor Project

Umbrello was chosen because of its additional ability to gerate C++ code from
the UML class diagrams. It has been used by the CASTOR develognt team since
2005. The result is that the developer designs the data mod#l the new application
and the codegenerator creates C++ classes with getter andtse methods for spec-
i ed attributes. These do not contain any logic and can thertore, be compared to
Sun's JavaBeanstechnology [19]. This generation of code was adapted to theeds
of CASTOR II. It also o0 ers SQL statements to create the corresponding relational
database schema as well as tlednverter classes enabling di erent representations
for the object (see Section 2.2.3).

The tablenames correspond to the names of the classes in thagdam and the
coloums are the attributes of the classes. The time ow of theequence diagrams
shown in the this thesis are always top down.

UML Diagramm

]
| Umbrello Code Generator|

/\

class TestClass : public I0bject { | C++ Code for Streaming Converters

public : void createRep
int type(); {
setType(int newval);
string name();...

ad()->stream() << obj->type();
ad()->stream() << obj->name()

}

for Database

void createRep(lAdress ad, 10bject* obj){
const string insertStr =
"INSERT INTO TestClass (type,name) VALUES (..";
insertStatement = createStatement(insertStr);
insertStatement->execute();

Y

SQL for DB schema
| CREATE TABLE TestClass (type INTEGER, name VARCHAR(2048));|

Figure 2.8: lllustration of the generated code from Umbredl

19

Chapter 2. The Castor Project

Framework for Multithreaded Daemons

This framework was designed as a part of CASTOR Il to provide ra easily
accessable API for creating and runningthreadsin C++ as well as to simplify
the program code of daemons. A capture of the class diagramgsen in Figure
2.9. The advantage of this framework is that the developer naconcentrate on
his application and the program code is far cleaner. As we dam later, the new
Repack system uses this framework to realize the server panthich run threads in
a thread pool A thread pool means that a user speci ed class is instantiatl once
and it is started with a given number of threads. The prereqgsite is that the class
has to inherit from IThread and that the run method is implemented.

A BaseServercan have several thread pools, each targeted at a specic pase.
There are currently two implementations inheriting from BaseThreadPoal which
provides functionality for both thread pool classes. Eachse a concrete instance of
the IThread class, in which the developer de nes the behawio of the thread.

The rst one is the ListenerThreadPoo| which binds to a socket on a de ned port
and executes the thread method whenever there is an incomiagject. The second
one is the SignalThreadPool which spawns the thread frequently. This time is
speci ed when the SignalThreadPool class is instantiatedg by a BaseDeamon.

To summerise : Each thread pool has exactly one instance of ancrete IThread
class. Its code can be executed by a given number of thread$id means that the
developer must care about the thread-safeness of this class

Conversion Services and Converters

Conversion services are a special kind of service that alloanversion of data from/to
a given representation to/from memory (that is to/from a data object in memory)
in C/C++. This can typically be used for streaming (the representation being a
byte stream) or for database storage (the representation ing data in the database).

20

Chapter 2. The Castor Project

Figure 2.9: Capture of the framework for multi-threaded damons class diagram

The typical interface of a conversion service provides twoam methods, createRep
and createObj that respectively create the representatioof a data object from the
object and creating a data object from its representation. A easy implementation
of these methods is to have a big decision on the di erent olgetype and dedicated
code in each case. This is not dynamic. It means that the sece implementation
has to be changed for each new object.

Another approach is to use converters. These dedicated ot are able to convert
one type of object from/to a given representation. They arein some sense, very
similar to services : they are also stateless and they havetiaries that are listed in
a central list. This list contains a two level entry : represetation type and object

type.

The conversion service can now work in the same way that theiarit works with
services. When a conversion needs to be done it will get thght converter, using

21

Chapter 2. The Castor Project

the central list (and maybe loading the correct library), aal will then instantiate
and use it. If a new object type is added to the system, the newoverter should
be put in a library and declared in the con guration le. The system will be able
to use it without recompilation and without relinking. If the con guration is read
from a le at run time it can use it without the need for restarting [?] [35].

2.3 Architecture

Since we now have a general overview of what CASTOR Il is intded for, and

how it is used in production, it is necessary to take a closesdk at its architecture.

We do not intend to present all the details, since this is ouide the scope of this
thesis. However, highlighting the details of some comportsnis recommended for
understanding the following chapters.

The pluggable framework mentioned in Section 2.1 is explad by introducing the

relevant components of CASTOR II. The interactions of thosare explained on the
basis of a work ow of a typical user put and get request.

CASTOR Il is driven by a database-centric architecture withindependent dis-
tributed components. Most are stateless and the code is imtaced with Oracle
or MySQL relational database management systems [DBMS]. @structure allows
the use of other relational DBMS if necessary (currently Ode Enterprise Edition
10 is used). Of course this indicates that in terms of availdlty they rely on the
performance of this DBMS.

The components can be restarted and parallelised easily toopide scaleable perfor-
mance for CASTOR II. Since theStager Logicuses this database it is also mentioned
in the following as theStager CatalogueThe simpli ed schema of this database can
be found in Appendix C.1.

In terms of software projects already discussed, CASTOR llag designed using UML
diagrams, created with the Umbrello UML Designer. The Umbik Code Generator
was used to create the database schema.

22

Chapter 2. The Castor Project

2.3.1 The Components

Figure 2.10 shows that CASTOR Il consists of many daemons "sounding” the
central database. The two pink rectangles indicate which agponents have to be
installed on the same host.

Figure 2.10: The overview of the CASTOR Il architecture

Request Handler = The RequestHandler [RH] is the interface between the Stager
Logic and the client, as well as for requests coming from CA®R [l components
(e.g. the GecDaemon). It veri es the sent object and stores iin the database to be
handled by the Stager Logic. The role of the RequestHandles also to insulate the
rest of the system from high requests bursts.

23

Chapter 2. The Castor Project

RMMaster and RMNode The RMMaster gathers monitoring information from
the RMNodes running on diskservers. This is used for load laaicing the migration
and recall process of les.

GcDaemon The GcDaemon is the ‘cleaner’ of CASTOR II. It deletes the Is
from the diskserver whenever no space is left or a le becomeot'old'. The decision
which les are to be deleted, and when, is taken by the ExpertyStem.

Expert System The intention of the Expert System (Expertd) is to externalze
decisions based on policies. It receives requests from otlm®emponents (Stager,
MigHunter, GcDaemon) and executes user-de ned scripts. Ehadvantage is, that
policies in scripts (Perl, Posix) can be changed on-the- yrad no recompilation of
the a ected parts is necessary.

MigHunter The Mighunter frequently queries the Stager Catalogue forles to be
written to tape. If candidates are found, the Expertd is cordcted to ask for special
handling and to subsequently attach them to Streams. Streasrare assigned to one
tape request. The Migrator, for example, takes all candidas in a Stream to copy
the les to the assigned tape.

RTCPClientD The RTCPClientD is the master daemon controlling the tape
migration/recall process. Whenever les are marked in thet8ger Catalogue to be
recalled or migrated it executes either the migrator or rediar.

Migrator/Recaller These two multithreaded components are executed by the
RTCPClientd to either retrieve les from tape or to write them to tape. In detail,
they announce the RTCPD to transfer the les from/to the disk server to/from the
tape via RFIO protocol. The disk server itself runs a RFIODa@on, which accepts
the connection.

24

Chapter 2. The Castor Project

Tape Daemon The Tape Daemon runs unattended on a tape server and is re-
sponsible for the communication between tape server and tapibrary. It uses the
tape library speci c drivers to send commands to the assigdetape drive. It sup-
ports DLT/SDLT, LTO, IBM 3590, IBM3592,STK 9840, STK9940A/ B tape drives
and ADIC Scalar, IBM 3494, IBM 3584, Odetics, Sony DMS24, STiRowderhorn,
STK SL8500 tape libraries as well as all generic SCSI driveoropatible robotics
[20].

The Scheduler The Scheduler determines the best candidate resource (lgss
tem) for a job. Its decision depends on the load of disk sergefsee RMMaster and
RMNode).

2.3.2 The Central Services

The NameServer

The NameServer is one central services component that prdgs the CASTOR
namespace. This appears as a normal UNIX lesystem directohierarchy. It as-
signs a unique 64 bit le identi er to all name space elementéles and directories).
If a le has been written to tape, the tape-related data is addd into the database.
The CASTOR Il Recalleruses this information if a le has to be copied from tape
to disk again. Files in CASTOR are classi ed byFileClasses They determine how
many copies of the le are going to be created on tape. The imigon is to create
di erent backups of this le. For example, the FileClass of ALAS and CMS les
allows two copies on tape (in the following also mentioned &apecopy).

In the era of CASTOR |, les were allowed to be splitted over mee than one tape
to use the full tape space for storage. The result is that a lean consists of 1..n
segments Segments are the internal representation of those parts af le in the
NameServer and Stager database. This policy has changed IASTOR Il and les
are now written completely to one tape.

25

Chapter 2. The Castor Project

The VDQM

The VDQM (Volume Drive Queue Manager) provides a FIFO queueof accessing
the tape drives. Requests for already mounted volumes arevgn priority in order
to reduce the number of physical tape mounts [21].

The VMGR

The VMGR (Volume Manager) keeps information about all tapesn CASTOR I

(e.g. free space, capacity, library, etc.). It also enable® group tapes for given
activities. It is, for example, useful to have di erenttape poolsfor the experiments.
They are independent from the library and tapes can be rema¥added to tape
pools easily. This tape pool information is used during the igration of les.

The CUPV

The CUPV (Castor User Privileges) provides rights to usersral administrators
for tape related operations e.g. reading a le from a tape. linanages a role based
authorisation mechanism, and is queried by the NameServer WMGR, if they need
to process an access request.

2.3.3 The Stager Logic

The Stager Logic interfaces with the central services to ebke put/get le requests
by users. In this case, he has to specify @erviceClasswith the request. The Ser-
viceClass has to be de ned in the Stager Catalogue by the CA®R operator and
keeps the following information for recall/migration proess:

disk and tape pools for recall/migration
the number of tape drives used for migration
policy for tape migration

policy for recall

26

Chapter 2. The Castor Project

policy for garbage collection

In combination with the FileClass from the NameServer 2.3,2vhich is also kept in
the Stager database, the migration can be tuned very e ectaly. Two use cases are
listed below to explain how the combination of both archiveltis.

Selective Migration Based on Filesize

A ServiceClass, userSvc, is con gured with two tape poolsadtAccess and largeCa-
pacity. The former contains with relatively low capacity bu with fast mount/load/-
position (e.g. STK 9840 media). The largeCapacity tape poabntains high capacity
media with relatively slow mount/load/positioning time (e.g. STK 9940 media). The
use-case to be addressed is the following: it is desirableb® able to selectively con-
struct the migration streams so that small les, say le-siz <100 MB, should be
migrated to the fastAccess pool while large les should go the largeCapacity pool.

Migration of Dual Tape Copies to Di erent Tape Pools

A ServiceClass, rawDataSvc, is con gured with two tape posi copyl and copy?2.
The les written to rawDataSvc all belong to the FileClass dalCopy, which is
designed with two tape copies. The default behaviour of the igHunter program is
to assign both copies to all available Streams. The desire@laviour is to selectively
write les with copyNb = 1 to tape pool copyl and the les with copyNb = 2 to

copy2.

2.3.4 The Recall of Files

The components for a get request (recall) are explained inghfollowing steps.

1. The client sends its request to the RequestHandler, whidtores it in the DB

2. The Stager polls the DB to get the request and checks for lavailability in
disk cache

27

Chapter 2. The Castor Project

3.

4.

10.

11.

If the le is not available it is set to be copied from tape
RTCPClientD

polls the DB to get les to be copied from tape to disk (recall)
gueries Stager for the target lesystem

gets location of le on tape from the NameServer and submits r@quest
to the VDQM

executes the recaller

. VDQM reserves a tape drive and tape server for the tape reegt

If the tape drive is ready, the RTCPD transfers the data to he selected lesys-
tem

. Stager polls the DB to check for le availability (2)
. The le is available; Stager launches a StagerJob throughe scheduler

. The StagerJob triggers the RFIODaemon and informs the elnt as to which

disk server and port to contact.
The Data is transfered to the client

The Stager Catalogue is updated and cleaned up

2.3.5 The Migration of Files

The collaboration of components for a put request (migratio):

1.

2.

The client sends its request to RequestHandler, which s&s it in the DB

The Stager polls the DB to get the request and launches théa§erJob through
the scheduler

. The StagerJob answers to the client through the RequestRleer, giving to it

the machine and port with which to contact the RFIODaemon.

28

Chapter 2. The Castor Project

4. The data is transfered from the client to a disk server
5. The MigHunter attaches the le to a stream

6. The RTCPClientD will launch a Migrator

7. Migrator

Queries a tape from the VMGR, depending on the tape pool inforation
in the ServiceClass the le was staged in

Submits it to the VDQM

Asks the DB for the next migration candidate in the stream (baed on
lesystems availability) and writes it to the assigned tape

The NameServer is updated with the location on tape returnetly the
tape server

8. The Stager Catalogue is updated

Data Veri cation

An important aspect for transporting data is the validation of it to provide correct

transmission. There is no problem if the data stays on one miegdbut as soon as it
is moved between two instances (e.g. tape and disk) there iglaance that an error
occurs during the transmission via network. Corrupted datdas an enormous e ect
on the later analysis of the experiments and leads to wrongswts.

To ensure a safe transportation the RFIO protocol checks theeceived data with
the Adler-32 checksum algorithm, which was invented by Marlkdler. It is almost

as reliable as a 32-bit cyclic redundancy check (CRC-32) [Z&r protecting against
accidental modi cation of data, such as distortions occuing during a transfer, but is
signi cantly faster to calculate in software. Its speci cdion and detailed description
of the algorithm can be found in RFC 1950 [23]. This Adler chksum is stored with
the le segment information in the NameServer database andsed to validate the
data after every transfer. In case the calculated Adler frorthe received data di ers

29

Chapter 2. The Castor Project

from the original one an error is written to DLF and the transér is tried again up
to three times (Stager default value).

30

Chapter 3

What is Repack?

This Chapter gives a general introduction to the topic of Regck; What it is, why it
is used and why it is important. An explanation of Repack is gen and the reasons
for it are listed. A detailed understanding of tapes is indigensable and therefore

presented.
Repack is a synonym for a copy process, which copies all of a ta pe's
data onto temporary disk storage and then rewrite it onto ano ther tape.

From Chapter 2 we know that CERN uses CASTOR to store huge amatiof data
permanently from the experiments on magnetic tape3ape operatorsare responsible
for maintaining these tapes and the tape libraries. If an opator has reason to
suspect that a particular cartridge is giving problems, it$ possible to remove it
from use by moving all the data to other tapes using the Repacutility. These
problems and further issues are listed below and explained detail in Section 3.2:

To prevent data losses, because of reaching the tape's meuhal lifecycle

To stack data on high-density tapes to reduce the number of pe&s to store
and manage

To move data to more durable tape media

31

Chapter 3. What is Repack?

To release tapes for reuse

To optimise space usage of tapes

To understand why those problems appear and how they are setl; we have to take
a closer look at the technology and implementation of tapes.

3.1 Introduction to Tapes

A magnetic tape is a non-volatile storage medium consistingf a magnetic coating
on a thin plastic strip. Nearly all recording tape is of this ype, whether used for
video, audio storage or general purpose digital data storagising a computer.

3.1.1 History

The Magnetic tape was rst used to record computer data in 1950n the Eckert-
Mauchly UNIVAC | [24] . The recording medium was a a strip of 12" (12.7 mm)
wide thin metal, consisting of nickel-plated bronze. The wording density was 128
characters per inch (198 micrometre/character) on eight &cks at a linear speed
of 100 in/s (2.54 m/s), yielding a data rate of 12,800 charaets per second. Of the
eight tracks, seven were data and one was a clock, or timingtk. Making allowance
for the empty space between tape blocks, the actual transfeate was around 7,200
[25] characters per second. E ective recording density ireased over time and a
multitude of tape formats have been developed and used.

3.1.2 Current Use

Today, most modern magnetic tape systems use reels that areich smaller and are
xed inside a cartridge to protect the tape and facilitate handling. Modern cartridge
formats include Quarter Inch Cartridge [QIC], Digital Linear Tape [DLT] and Linear
Tape Open [LTO]. A tape drive uses precisely-controlled mots to wind the tape

32

Chapter 3. What is Repack?

from one reel to the other, passing a read/write head over thiape. The latest
generation used at CERN are thd.TO-3, IBM 3592 J1A and T10000tapes. LTO
is a computer storage magnetic tape format developed andtiaied by Certance,
Hewlett-Packard and IBM as an open alternative to the propetary DLT. LTO

originally came in two variants Accelis and Ultrium:

Ultrium, the high capacity variant

Accelis, the high speed variant

However, the performance of the Accelis tapes never excegkdleat of the Ultrium
tape format so there was never a demand for Accefis LTO-3 is the third genera-
tion of this standard and is currently the latest. But the corsortium announced a
roadmap for the LTO development with the goal to achieve 6.4& of capacity and
540MB/s reading speed for the sixth generation in 2010 [2&7].

The T10000 tapes and drives were developed by StorageTekwri®un Microsystems,
and o er even higher performance for read/write actions tha the LTO-3 tapes.
The IBM 3592 solution is comparable to the T10000 from STK, kuo ers higher
mechanical durability.

Table 3.1 shows tapes and tape drives with some of their tegbal speci cation,
which are currently used for storage at CERN.

Model Capacity Average le | Data transferrate | Load/Unload
(uncompressed) access time | (uncompressed) cycles

T9940B | 200 GB 41 sec 30 Mb/sec 10,000

LTO-3 400 GB 72 sec 80 Mb/sec 5,000

3592 J1A| 500 GB 60 sec 120 Mb/sec 20,000

T10000 | 500 GB 62 sec 50-120 Mb/sec 10,000

Table 3.1: Overview about the most common tape drive modelR26], [28], [29], [30])

1LTO came to mean the same as Ultrium

33

Chapter 3. What is Repack?

3.1.3 Organisation of Tapes

The following is an example of the LTO-3 tape recording teclque commonly used
by tapes at CERN. The only di erence is the length of track, tle amount of tracks
and the data density of the volumes.

The Ultrium 3 format records 704 tracks across the half-inclof tape width. This
linear recording format has a serpentine characteristic.le drive mechanism makes
multiple passes from the beginning of the tape [BOT] to the ehof the tape [EOT]
and back to read or write the full capacity of the cartridge. kgure 3.1 illustrates how
the Ultrium 3 format splits the 704 tracks into four bands of ¥6 tracks each. Data
is written to the innermost bands rst, to provide protection to the data recorded
earliest in the process, by writing it in the centre, the mosphysically stable area on
the tape. Data is also veri ed as it is written, because the @& head follows the write
head. On pass one of a round trip down the length of the tape arighck, 16 tracks
are read, or written, concurrently. At the end of the tape, pas two of the round trip
starts. The read/write heads are indexed and positioned ov&6 new tracks, and the
tape reverses direction back toward the beginning of the tago complete the round
trip. For the next round trip, the heads are again indexed to anew position over
a new group of 16 tracks. Figure 3.1 illustrates only 8 readfie components for
the drive head. The servo bands guarantee this positionind the head and ensures
that it follows a straight line on the data band. The guard barls stabilises the tape
band. The arrows indicate the movement direction of the head

Table 3.2 shows various tape drives and their need for a fldngth pass. Fewer
passes equals less media wear. The T10000 tape drives usea kbead technology,
by physically separating the dual heads down the length of éhtape by more than
an inch. Using the 32 channels for read/write simultaneougslcauses less tape wear
compared to the LTO technology. Still, they are ten times asx@ensive (37.000 USD)
as a 'normal' LTO3 drives (a IBM LTO3 SCSI-2 drive costs aroud 4.000 USD¥.

2Market prices from July 2006

34

Chapter 3. What is Repack?

Data Band 3

Data Band 1

prewritten Full Tape
Servo Bands Width

Guard __|
Bands

Read/Write Head Read/Write Head

Data Band 0
Head Movement

Data Band 2
‘ —
BOT EOT
Figure 3.1: lllustration of reading / writing data to tape.

Drive Tracks Channels Full-length passes
T9940B | 576 16 36
T9840C | 288 16 18
T10000 | 768 32 24
LTO3 704 16 44
IBM 3592 | 512 8 64

Table 3.2: Track, channel, and pass requirements for varisdape drives.

35

Chapter 3. What is Repack?

3.1.4 Organisation of Files on Tapes

In general, data on tape is organised biabels A label is a small area on tape where
information about the data is stored (e.g. checksum). Assunyg that these are les
(or in CASTOR, segments of les), labels mark their beginnig. To nd a le on
tape the le sequence numbefFSEQ] (the label number), is given to the tape drive.
This then seeks over the labels until it nds the correct onerad then reads the data.
In case of writing, the tape drive seeks to the last label (la&SEQ number) and
appends the new data (see Figure 3.2).

Tape drives currently allow two ways of accessing data on tapby FSEQ or byuser
blockid Both are reported when the data was written and stored in th&lameServer.
Modern tape drives, like the STK 9940, optimise this seek peess if the user blockid
is given. They translate it to the physical location on tape ad determines the
quickest method to read the data block. If the block is some phical distance from
the current location, a calculation will result in a high-sged head move to the block
location, which is followed by a low speed data reading. Thisser block id is used
later in the Section 8.3.

Tape Labels
l 7
File Sequence
Number
T
BOT Data Blocks (Files,Segments) EOT

Figure 3.2: The le sequence number for new data

36

Chapter 3. What is Repack?

3.2 The Reasons in Detall

Mechanical Durability

The magnetic tape inside the cartridge is made of highly dubde materials. However,
the tape wears out after repeated cycles (winding/rewindg). Eventually, such wear
can cause an increase in tape errors. Modern tape drives drterrors during a read

or write process and avoids them next time. Thanks to a very ecient and secure
way of writing, the data can still be read. But the increase ofeported errors from

the drive is an indicator that the end of the tape's is reached&nd the data has
to be removed to ensure data integrity. These errors are logd by the tape part of

CASTOR Il and whenever the tape errors reach a certain threskd, an email is sent
to the tape operators. In most cases, the data then has to bepacked to another

tape to avoid total data loss or, at least expensive data reeerage (e.g. by specialist
companies).

Not only the read/write errors are logged. The VMGR also stas, next to the

administrative information (eg. tape library, vendor), fa all tapes statistical data:

amount of read mounts

amount of write mounts

last tape drive it was mounted in
the containing number of les

free space and capacity

This allows the operators to track and monitor the cartridgeperformance and en-
ables predictive failure analysis and enhancing data intety. CASTOR tape oper-
ators, based on either reported errors on a tape or on the nuebof total mounts,
if a tape has to be repacked.

37

Chapter 3. What is Repack?

Stack Data on high-density / more durable Tapes

We move data from one type of tape to another for several reasand advantages:
In case of repacking low density tapes to fewer high densitgpes, less mounts and
drives usage are needed to access the les in future. An exdep

Repack shifts 480GB of data from eight T9940A tapes to one TQOO tape. Only one
tape has to be mounted to access the same number of les in fodu Experience from
the last few years shows that the experiments retrieve thedata for analysis by a
list of les (one mount, many reads), not le by le (each readrequires one mount).
Therefore we achieve less tape drive usage, which resultsgmeater availability for
other read/write requests. So, for the same throughput to f@e during a running
experiment, fewer tape drives are needed. This results inner costs.

In fact, since CERN wants to get rid of the old StorageTek Powethorn silos to
make room for more IT equipment, the remaining tapes have toebrepacked to the
new tapes.

Another advantage for repacking to other types of tape is thawe move data to
more durable tapes. In case users need data from one tape veften (measured by
the mounts in a certain period of time) it is preferred to movet to more durable
tapes, like the IBM 3592s. Their higher number of possible mots (see Table 3.2)
decreases the chance of data errors compared to another tappes, e.g. LTO-3.
In the opposite, moving less used data from a IBM 3592 tape toraore adequate
LTO-3 tape, optimises the usage of tapes in terms of le usage

Optimisation of Tape Space Usage

Another reason for repacking is to avoid data loss due to inkd marked segments
(see Section 2.3.2) on a tape. Segments become invalid wivenea userdeletes

or modies a lein CASTOR II. In fact, the location entry of that le is de leted

from the NameServer database, but they cannot be physicallemoved, since this
is a character of data organisation on tapes (see Section .d.1This media type is
written incrementally (like writeable Compact Disks [CD]) which means that new
les are always written to end of the last le. In consequencé¢he invalid data cannot

38

Chapter 3. What is Repack?

be overwritten and the tape space is lost.

To reclaim this space, the valid segments have to be copied amother tape and

the old tape completely erased. The tape operator then candede to use this tape

again. This 'recycling’ results in lower media costs per yeabecause for the same
data space requirement less new tapes have to be bought.

Figure 3.3 illustrates the e ect of this tape space optimig#on.

valid Segments

Tape 1 free Space
BOT deleted Segments EOT
Tepe? _ free Space
BOT EOT

Figure 3.3: lllustration of the optimisation e ect of repadk on tapes

39

Chapter 3. What is Repack?

40

Chapter 4

The old Repack

The focus of this chapter lies on the functionality of the cuent Repack system
(refered to as Repack). The architecture is introduced anthe functionality brie y
outlined.

4.1 Introduction

Repack | was developed in 2001 as a part of CASTOR | to archived goals listed
in Chapter 3. As such, it uses the old Stager API to copy segmsnfrom tape to
disk and back to another tape. Hence, it needs a CASTOR | ingtae. It is able to
migrate data between di erent types of tape, as well as optiiee tape space usage.

Repack | is used since 2001 and because CASTOR Il was deployaa dedicated
CASTOR I instance currently runs to provide repack functioality.

After Repack has been introduced and in production for sewarmonths it turned
out that it did not work correctly and about 30,000 les were bst due to wrong
segment information handling. The les were rescued during recovering process
with log information, which took more than 2 months.

The VMGR and NameServer are the same as in CASTOR Il. Only thet&ger is
from CASTOR .

41

Chapter 4. The old Repack

4.2 Architecture

The Repack | application is tailed to CASTOR | and like many oher modules
written in C. It uses a Stager command to copy les from tape talisk cache as well
as VMGR function calls to mount or unmount tapes for migratio. It is available in
the CASTOR | software package as one executable, which dewalgh the full repack
process.

The sequence diagram in Figure 4.1 shows the work ow of Repat First the
les are recalled in sets by triggering the Stager. The numlbeof segments in this
set is determined by the Stager con guration and in uences davily the number of
mount/unmount commands Repack sends. The reason for thistde seen in the
next steps. If the rst set of segments is recalled, Repack mots a tape through the
VMGR and locks it for writing. As soon as this is done, it triggrs a RFIO command
to copy the segments from disk cache onto the mounted tape aadjacent updates
the VMGR. The free space of the new tape is decreased and them&Server is
informed about the new location of the processed segmentsh&n this is done, the
next set of segments are handled.

If the con guration allows only a small set of les, more moutiunmount operations
are required.

42

Chapter 4. The old Repack

O

Figure 4.1: Sequence diagram for Repack |

43

Chapter 4. The old Repack

44

Chapter 5

Analysis and Design for a new
Repack

Now after that we have introduced the Repack | architecturethis Chapter will
outline its limitations and from this the motivation for a new development of Repack
is presented. The main requirements are necessary for thether development and
are elaborated, too.

5.1 Limitation

Looking at the implementation of the current Repack, we disaver several problems
and limitations:

1. It is not compatible with the existing CASTOR Il architecture. As explained
in Section 4.2 it uses the CASTOR | Stager API, which was reimi@mented
and some parts have changed. The necessary functions whickpBck | needs
are no longer available. To provide a repackaging of tapes the existing
situation, a CASTOR 1 instance has to be run. This is a unsustaable
situation and has to be changed.

45

Chapter 5. Analysis and Design for a new Repack

2. Secondly, and very signi cally, Repack | is not able to caratenate les which
are split over more than one tape. In the era of CASTOR | tape sige was
more expensive than nowadays. To limit tape costs the develers decided to
use the full tape space and write the remaining le data to a e tape. Thus,
one le can have several segments (see Section 2.3.2). Todages provide
more space for less money and the policy of writing les to taphas been
changed. It is now recommended to write the le completely tmne tape.
Hence only one tape has to be mounted to read a le.

Repack | just copies segments from tape to tape and is thersfonot able to

ful Il this new requirement. The result is that the repackagng process is not
optimal and has to be redeveloped.

The time a recall process takes is mainly determinded by thesage of tape
drives and -much more- by the number of segments. For each semt a

tape request has to be submitted to the VDQM and, if a free tapelrive

found, fetched by the handbot of the tape library and loadedni a tape drive.

Mounting only one T9940B tape, takes about 30 seconds (seebla8.1). In

the case of two segments, the minimal time is already 60 sedsnIn both

cases, the waiting time for a tape has not being considerindgdding the

average head positioning time of 45 seconds for both tapesealdy result in

total in 150 seconds. Still, up to this point no data was readrém tape. At

an average reading speed of 26MB/sec for this drive type, atfidr a segment
size each of 300MB, another 24 seconds (12 seconds read tiaghehas to be
added.

To read a le of 600MB in two segments, i.e. under perfect theetical

conditions with no delay due to read error and no network tragport times,

it takes around 180 seconds to copy a le from tape to the diskache. It

takes half this time for the same le consisting of one segmigrwhich is an

improvement of 100%.

This example shows the great disadvantage of not concatemaj the les at

the time the tape is being repacked.

46

Chapter 5. Analysis and Design for a new Repack

Table 5.1 gives an impression of how many les are currentlyected by this

segmentation. The huge amount of les with two segments undaes the need
for defragmentation. The number of les with 3 or more segmes is very low
compared to the total amount (50 million), but around 30 CAS™R I instances
with the old migration policy are still running and the amourt of segmented
les will increase.

Segments| Number of Files
47,908,006
2 22.200
3 429
4 19
>5 1

Table 5.1: Statistic about the about segmented les from thd&NameServer (August
2006)

The (very expensive) robotic tape libraries contain highlysophisticated parts
like the robotic arms, which must sustain permanent movemésn for load-
ing/unloading tapes into the drives 24 hours a day. For the IBl Library, tests
were done with 10,000 mounts per week with 1% failure [33]. Outention is
clear, fewer mounts would increase the lifetime of these psand resulting in
less maintenance and down-time. This will also have a benéat e ect on the
running costs.

3. Repack | is not able to recover after it had crashed. This ibecause the
information about the Repack process is kept in memory and dbwhenever
the program is exited. Processed les until this point wereapacked correctly
and they don't e ect performance, if the tape is repacked agma Still, the
data which was stored in the disk cache has to be removed by ltarwhich
means a time intensive procedure is needed to clean up evéigyy before
restarting the process.

47

Chapter 5. Analysis and Design for a new Repack

4. The tape load/unload operations in Repack | are stronglyependend on the
con guration of the CASTOR | Stager instance. The lower the amber is,
the more operation are required. Considering the load on th@ape libraries,
this solution is hardware intensive and not optimal. Espeally because the
Repack system knows that more data is to be written, but the §ae unloaded,
because the Stager limits the available les.

5. For each tape the user has to start their own Repack instaemn a consofg
which handles the process. The program runs as long as the @ess is not
nished and all segments repacked (up to eight hours).

We conclude the limitations for the current Repack implemdion:

Mismatch of the old Repack to the new CASTOR Il architecture.
No Defragmentation of les

Di cult to handle after crashes

C Code

Di cult handling of concurrent repack processes

Cleanup on diskcache

Bad migration functionality

LUnix text entry and display device for the system

48

Chapter 5. Analysis and Design for a new Repack

5.2 Requirements

The requirements are a result of the existing limitations ash give us the basic
framework what the new Repack application should provide. B8 there are also
more aspects. Like other CASTOR Il components the DLF (see &®n 2.2.3)
is recommended to be used for storing and accessing log mgssathrough a
comfortable web interface. This gives the Repack user a sitapvay to get detailed
internal information about the Repack system.

The program code needs to be changed to an object orientatexhjuage to make
the code easier to maintain. From the general CASTOR Il arctectural point of
view, it is recommended for non-time critical applicationglike Repack is) to be
written in C++ and to use existing C++ modules and frameworks

Another important aspect is the defragmentation of les. Wkenever a segment on
a tape is repacked, the corresponding le has to be recalledtiwvall its segments,
merged and written to a new tapes. As mentioned before (seecen 5.1, this is
required in CASTOR Il for faster le access and reduces the dal/unload operations
for tapes. By this the longevity of tapes is increased.

System and program crashes should not in uence the progressrepacking tapes.
It is allowed to be interrupted or paused, but not disturbed m the sense of losing
all information about the progress.

It is very useful for the user to see the progress of repackagi This can be used to
estimate the remaining time for a tape to repack.

We conclude the following requirements:

Usage of the CASTOR Il Stager API and no direct tape operation

Able to consolidate a le that spans multiple tapes onto oneape (Defragmen-
tation)

Scalability for handling jobs
Changement of C code to easier maintainable C++ code.

49

Chapter 5. Analysis and Design for a new Repack

Robust against unexpected program crashes
Usage of the DLF
Monitoring of the process

Tape drive usage minimal

50

Chapter 6
Alternative Solutions

The last Chapter showed that a new solution for the Repack uitly in CASTOR
needs to be found. In this Chapter we look at existing produst which may be
applicable.

A '+' indicated a positive aspect, -' a hegative.

6.1 IBM Tivoli Tape Optimizer on z/OS

The IBM "Tivoli Tape Optimizer" product copies information from one or more
tape volumes to other tapes in a single copy request. It can liged with any source
or target media that is capable of storing physical or logidaape volumes. In detail,
it allows all types of tape media and tape devices that are cquatible with IBM
systems [32].

+ support is provided

+ veri es written data

- works only with IBM Tape Libraries

- needs a running IBM Tivoli Storage Manager

51

Chapter 6. Alternative Solutions

tapes must be Tivoli managed

runs only on z/OS

additional e ort would be needed to update CASTOR NameSeer information

no possibility to concatenate les (see Section 5.1)

6.2 Novastor TapeCopy

The Novastor TapeCopy gives the ability to copy existing tap data from one tape
to another, independent from the tape format (LTO, 9940,etg. It performs an exact
bit for bit copy of a tape to another tape or to a disk. The outptai can be any SCSI/
EIDE tape device or a multi-tape library [31].

+ works with any SCSI or EIDE tape drive
+ copies simultaneously from one source to one or many desttions.
+ veri es written data
+ functions with one tape drive only
- only for Microsoft Operating Systems
- additional e ort would be needed to update CASTOR NameSeer information

- no possibility to concatenate les (see Section 5.1)

6.3 Result

From our research for this topic, we discovered that there igery little information
about, or solutions to, our speci c scenario. However, lootg at them is necessary
for completeness.

All the systems presented create an exact copy of the originape, to ensure data

52

Chapter 6. Alternative Solutions

integrity and make tape format changes available (see Semi 3.2). Still, they only

cover a few of the requirements presented in Section 5.2. Catenating les is a

CASTOR speci ¢ problem and not implemented by them. Neverthless, this is a
major issue and has to be ful lled.

Furthermore the usage of DLF comes into question as it is nahplemented by third

party software.

6.4 Conclusion

The result shows that the existing commercial solutions aneot satisfactory for the
current and future needs of CASTOR Repack. The problem is CA®R specic
and a new development project is inescapable.

53

Chapter 6. Alternative Solutions

54

Chapter 7
The new Repack

In this chapter we describe the top-down development of theew Repack system
(refered to asRepack Il). First we de ne the use cases and from these the require-
ments for the application are determined (Section 7.2). Bad on this information, a
detailed view on the software framework is needed to subsemqtly create the high
and low level designs. The work ow de ned in Section 7.5 gigea guideline for the
necessary development steps.

7.1 Use Cases

The development of a new application requires the examinati of the use cases.
These use cases are shown in a UML diagram. The descriptionrgs the possibil-
ities the user can control the new Repack system (see Figurd)/

The use cases are:

Get Help The user has to get information about the control of Repack lIThe
list of available commands line arguments for this are shown him on the console.

Start new repack process The user starts a repack for a tape. This requires
that a least one tape has to be given as a parameter. The targeipe pool where

55

Chapter 7. The new Repack

Remove Repack process

Figure 7.1: Use case diagram for Repack client

the les should be written to, can be speci ed. The given tapenust not be in the
Repack system as a current running process (no double repach. The speci ed
tapes given as parameters can be in the same or di erent tap®@ls. The system
responds with an answer. The tape status must be marked as FUIin the VMGR.

Removes a tape from the Repack system and aborts

the repack for this tape. It is not checked whether the tape sbeen fully repacked
or not. The tape must not be in an archived state. The user carmpecify more than

one tape for removal. No answer is sent by the system.

Retrieving information about all Repack processes

an archived process is queried, the system responds with aroe.

56

The user should be able
to get an overview of the active (running) Repack processesththeir statistics. If

Chapter 7. The new Repack

Retrieving information about one Repack process The user should be able
to get the statistics and details for one speci ¢ Repack press.

Archive nished tapes The user should have the possibility to archive repacked
tapes. For each candidate (nished, repacked tapes), we gah answer from the

system. An archived tape is not active, and therefore, avaible for repack again.

This allows the system to keep track of the history of the remked tapes. If

archived, it is not shown anymore in the status list.

In case of an error in the system when the user submits command message is
shown with a detailed description. If DLF logging is enabledand con gured for
Repack Il, more messages can be seen there depending on tggihg level.

If we take a closer look at the second use case, we see that thpets to be repacked
can be freely chosen from in di erent numbers from di erent &pe pools. Table 7.1
shows the resulting possiblities.

1..n Tapes| From To
1TP | 1 TP
1TP | nTPs
nTPs| 1TP
nTPs | mTPs

Table 7.1: The possibilities to repack a tape (TP=Tape Pool)

57

Chapter 7. The new Repack

7.2 Requirements

The requirements result from the presented use cases in $act7.1 and from the
analysis and design Section 5.2. Additionally the operatinsystem used at CERN,
SLC is listed to ensure maximum compatibility for CASTOR Il. The requirements
are:

the defragmentation of les
a scaleable architecture to satisfy the need for multi-useequest processing

to provide a user interface, which o ers command for input ath monitoring
for the user.

monitoring information about the running process

Robust against program crashes. After a restart, the proceshould continue
without user intervention (stateless)

to be easily maintainable and extendable
the usage the DLF logging facility

to runs on SLC-3/ SLC-4

to guaranteed correct data transportation

exibility in repacking source tapes to targets (di erent media types).

58

Chapter 7. The new Repack

7.3 The De nition of a Repack Process
For the following we de ne three main steps for a full Repackmpcess of a tape :

1. Read the valid tape segments
2. Copy the corresponding les to disk

3. Write les to a new tape.

7.4 Architecture

This chapter deals with the view of the functionality of Repak and its interaction
with other components of CASTOR Il. We are introduced to the igh level design
which highlight the overall functionality of the Repack Il g/stem. This prepares
the reader for the low level design, which helps de ne out thdetails of the new
application.

7.4.1 Software Framework

The new Repack is based on a@lodel-View-Controller [MVC] concept. This

represents the idea of separating an application's data melkl user interface and
control logic. The Model represents the business data obis@nd should be cleanly
separated from the Controller and the View - it should not negto know anything

about them. In this application, the Model is typically implemented as simple
classes that provide getters and setters for several of aliutes. They do not

contain any logic, but are exclusively used to transport dat between the backend
system and the frontend. As we see later on, the Model is desggl using UML with

Umbrello (see Section 2.2.3).

59

Chapter 7. The new Repack

The Controller, which takes care of the business logic, respds to events, typically
user actions, and invokes changes on the Model.

The last component is the View. Its responsibility is to be amnterface to the user.
It provides control mechanisms for the backend and preserit§ormation to the user.

This architecture is commonly used in modern software dewgiment, because
it gives the advantage of modifying one component with minial impact to the
others. Here, it is applied through eclient-server model. The View is represented
by the client, the Controller by the server. Hence, we achieva certain portability,
because the client can run on a di erent machine to the servefhey communicate
via the network using a stream representation of the Model.

Usage of existing funtionality

Repack Il bene ts from the fact that the basic functionality already exists and is
available in the CASTOR Il framework. The Stager API for exarple, provides an
interface to recall and migrate les. The new Repack appliteon uses this and is
therefore does not deal with low level implementation likeaipe operation. The main
reason for this is to avoid code redundancy. It is a bad polidg rewrite functionality
from a software design point of view instead of reusing it. Tehrobustness su ers in
terms of having to maintain the same code twice and it makes Back depend on
more low level components.

Having the migration policies in mind, a powerful instrumentfor the migration to
tape is available. One example is the tape handling for lesephending on their size
to optimise the reading of them (see Section 2.3.3).

Another advantage is the independence of hardware like diskrvers or tape servers.
As it was decided that it is not a function of Repack to deal wh the low level
implementation (eg. lesystem or tape layer), we can focushe development on the

60

Chapter 7. The new Repack

usability, stability and new features. From the high level pint of view, the server
itself implements theDelegate pattern34] by sending the real task (getting the les
from tape) to a CASTOR Il instance.

Performance

For performance reasons, the generic framework for multimeaded daemons is used.
The Repack server is able to run in the background as an unattéed application.
By multi-threading the request handling process it satis 8 the demand of being
highly available. This means that if two users submit a requst to the server, two
threads will be started to handle the command. The number ofoncurrent threads
has to be speci ed during compilation time.

Statelessness

Since the application is to be stateless, the logic part doemt keep any data in
the memory. The repack process information is stored permamtly and reliably in
a relational database. This prevents data loss during a progm crash (e.g. CPU
failure, harddisk failure). The actual DBMS which is used atCERN is Oracle
Enterprise Edition database version 10. The structure of # tables corresponds to
the Model we use to represent our business objects.

If we want to achieve statelessness for the application, is inecessary to separate
the repack process in into logically independent steps, éarepresented by a state.
If the process fails between two states, it falls back to thergvious one and stays
there until it is set successfully to the next one. As we seetda on, we get to know
to the di erent states and the assigned responsible modul@s the Repack server.
This stateless architecture is commonly used in high avabdity systems in industry.
Instead of trying to do as many process steps as possible acenthe idea is to do
little steps where, in each phase, few actions are safely exted.

61

Chapter 7. The new Repack

Modi cations in CASTOR Il modules

There are several changes to do in the existing CASTOR Il mobtks. We are able to
stage les, but not directly to migrate les since this is deaed by the Stager (more
precise: by the Stager policy). As we see later in Section ZLthese modi cations
a ect the Migrator, the NameServer and the Stager catalogue

7.5 High Level Design

The high level design gives us an overview of the work ow of ¢happlication
including the interaction with the CASTOR Il parts (see Figue 7.3). This is one of
most important steps during development, because during ihphase a lot of issues
have to be considered in order to have fewer problems in depitent.

To get an idea what the basic action of the Repack Il includesdpack a tape),
we make up the necessary steps according to the existing pb#isies. Figure 7.2
shows the activity diagram of a repack process. The boxes iodte the two main
phases of it.

1. The Repack system must be informed that a tape has to be reg@d. The
user (tape operator) uses the Repack client to send a requesintaining the
tape volume id to the Repack server. This implies that the tap operator
decides and determines which tape to be repacked.

2. The server checks if the specied tape in the request is @lfor a repack
(must be in marked as full in VMGR).

3. As we already know, the tape consists of segments of dataigéh can be
in a valid and invalid state. (see Section 2.3.2). The servewrtrieves the

62

Chapter 7. The new Repack

Figure 7.2: The activity diagram

valid segments from the NameServer and thereby also its cesponding le
pathname in CASTOR II.

. Since the Stager provides an API for copying les from tap& disk we use
this mechanism for sending a request to the Stager, contamngi the les names
for this tape from the previous step. In detail, we send a regst for each le,
but the Stager is smart enough to process multiple concurrenequests for
one tape together. In principle, the problem is reduced fromepacking one
tape to the much simpler task of repacking les.

We bene t from the fact that the les are automatically defragmentated

63

Chapter 7. The new Repack

by recalling them like a user, because the Stager cares abdhe read-out
from tape and concatenation of all segments in case of a fragnted le. This
implies that for each segment one tape has to be mounted andadce A de-
tailed analysis of how many les are a ected by this, is preseed in Section 5.1.

. As soon as the les are copied to disk, they can be written bl to a tape. It

is not necessary to know on which tape(s) we store the les, &ng as they
belong to the same tape pool. The solution for this part is to se the same
mechanism as the normal case. Using the Migrator (see Senti®.3.5) saves
a lot of redundancy instead of rewriting this part (like it was in Repack).

The tape pool information which is used by the Migrator to wrie the les

to tape is kept in the ServiceClass table of the Stager catgoe. In fact, this

ServiceClass can be set by the Repack system which providesi@hanism to
control the migration of les.

To realize this step, the internal mechanism of the Stager Bdo be examined
and the e ected parts changed. First idea: as soon as the lewe written to

disk, mark them to be written to tape again.

. After the le has been written to tape, the new location of he le has to
be updated in the NameServer. Since this procedure is not itemented, its
functionality has to be made up and a solution developed.

. The last step is not really necessary, but as good manneng send a command
to the Stager to remove the repacked les from the diskcache tfree space.
Normally the GarbageCollector runs and removes les whichre not accessed
anymore after a certain period of time.

64

Chapter 7. The new Repack

NameServer VMGR
3.get seg 2.checks 5. update file
tape location
store/update/ —< == ;
w get Requests - ‘ . . Y
REEEICIET > ,_y_\RecaII/Mlgrate files
— RepackDB
1' "7"‘\ 5 D v

send Job

| 6.remove files Stager

Y

| 4.stage files

Figure 7.3: Repack Il interaction with a subset of CASTOR Il
7.6 Low Level Design

After examining the high level design, this section introdces the detailed design
of the application. First, the data model is presented follwed by the functionality
of the Repack components. The problems we discovered in theeypous section are
considered and solutions are proposed.

7.6.1 The Data Model

The data model is necessary to specify the representationtbe real world objects
like tapes and les in the Repack system. These objects aresiigned using the Um-
brello UML Modeller and in combination with the service and onverter framework
they can be sent through the network between Repack client drserver as well as
stored in the database. But what kind of objects do we need?

First of all, a general request object which keeps some adnsitnative information.

65

Chapter 7. The new Repack

These are basics like the machine name, the submitting usergation time of the
request, etc. We de ne theRepackRequestvith the following attributes:

Machine, the machine name where the request is send

Username, the username of the submitting user

Creation time, the time when the request is created

Pool, the pool name of a pool to be repacked

Pid, the process id of the client

ServiceClass, the Stager ServiceClass to be used whenis@gn the les.

Secondly, an object for a tape to be repacked is to be creatdt.contains data
about aggregate size of all les, the name of the tape, the nurar of les, etc. From
the hierarchical point of view, it is lower than the RepackRguest, so we de ne the
RepackSubRequesibject.

A RepackSubRequest contains the following information:

- Volume ID, the tapename (see Section 3.1)

- Xsize, the total size of the les on tape

- Status, a number representing the status of this tape in theystem
- FilesMigrating, the number of les which are migrating

- FilesStaging, the number of les which are staging

- Files, the total amount of les on the tape

- FilesFailed, the number of les where problems have occwd during tape-to-
disk or disk-to-tape copy process.

- Cuuid, a system uni ed string, which identi es the request

66

Chapter 7. The new Repack

A tape itself consists of many segments which have to be regad. Therefore we
de ne the RepackSegmenbbject:

Fileid, The le id of the corresponding le

Segsize, the size of the segment

Compression, the compression rate of the segment

Filesec, the le section (segment) number (if fragmentedle, this is > 1)

Copyno, the tape copy number of the related le.

All Objects inherit from the 10bject class to be able to be usgby the database and
stream converters (see Section 2.2.3).

The relationships in Figure 7.4 between the objects are impgant. A RepackSeg-
ment belongs to one RepackSubRequest and a RepackSubRetpashave 1 to n
RepackSegments. It is the same for the RepackRequest and RefSubRequest.
Taking into account that a le can be fragmented and can consts of >1 Repack-
Segments, we could design it as an object between RepackSeb&est and Repack-
Segment, too. But, from tape point of view we don't have les oly segments.
These three objects are modeled in Umbrello and hence code tabe generated by
the codegenerator. The table names correspond to the namdghe classes without
their namespaces. The column names and column types of a &ldan be derived
from the appropriate variable names and the belonging assations. An association
column contains the unique row identi cation number [id], vinich is stored in a 64
bit unsigned internal variable. The column for the unique ids automatically added
to the table and does not have to be explicitly inserted intolte schema. All time
values are stored in seconds, which we count up from the Firdanuary 1970.

67

Chapter 7. The new Repack

%

"

tHS

%

%&8

%

%&&

Figure 7.4: The Repack data model

68

Chapter 7. The new Repack

7.6.2 The State Diagram

Since the RepackSubRequest is the representation of a tamethe Repack system
it is useful to set it to di erent states, each standing for a pocess step. With this
in mind, Figure 7.5 shows the resulting states:

Figure 7.5: The states of a RepackSubRequest

7.6.3 Repack Client

The Repack client is designed to represent the Repack Il sgsh to the user. It
validates its commands, builds a request and, as shown in Big 7.3, it sends it
to the Repack server. Being the View (see Section 7.4.1), mplements the use
cases from Section 7.1. As a result the parameters which cam frassed to the client

69

Chapter 7. The new Repack

realize these use cases. The responsibility is limited butlisthe parameters have to
be validated. In fact, it represents theFacade patternfor the Repack Il system [34].
Keeping it as simple as possible is one goal and thereforedtaasily maintainable
and extendable.

The command line signature of the client is shown in Listing.Z. An explanation
of the parameters is listed below.

repack -V VID1[:VID2..] [-0 serviceclass]

-R VID1[:VID2.]

-P PoollD [-0 serviceclass]
-S VID

-S

-a

-h

Listing 7.1: The signature of the Repack client

VID the tape name to repack

o the output ServiceClass (see Section 2.3.3)

R remove a tape from the repack system

P tape pool name

S Status of one tape

s Status of all tapes

a Archive nished tapes

- h Help

Creating the Request

A RepackRequest Object is created and, depending on the uggErameter passed,
the command eld in the RepackRequest is set. In case of repdngy a tape, the
passed Volume ID is set in the RepackSubRequest VID eld. Ifaitarget ServiceClass
(-0 option) is speci ed the default one is taken from the castoran g le on the

70

Chapter 7. The new Repack

server side. It is allowed to create a Repack process for mdhan one tape in a
single request. This results in multiple ways to do a repaclof the target tape pool.

1 tape to target pool
> 1 tapes from same tape pool to target pool

> 1 tapes from di erent tape pools to target pool

Sending Request

After examining the parameters and validating the input, tre request has to be
sent to the Repack server. For this we use the ClientSocketask which is already
provided in the project. It simply sends an IObject to a recignt and handles the
socket operations as well as errors (e.g. host not availaple

Handling the Response

After sending the RepackRequest, the received response lieaked for errors from
the server side. In case therrorCode attribute of the RepackAck object is set the
related error messageMessageTextis shown to the user. In case of requesting a
detailed status of a tape in the Repack system, the responds@contains information
about the related RepackRequest.

If no error occurs, a response (RepackAck object) with the RackRequest from the
client is sent back by the server. Table 7.2 shows how the sdd¢packRequest object
is used for the response.

Whenever an error occurs on the server side the errorCode ruen is set in the

received RepackAck object and the corresponding Messagkttie shown to the user.
In this case no RepackRequest (not even the original) is adtiéo the response.

71

Chapter 7. The new Repack

Command RepackRequest Answer from server

Vv one RepackSubRequestsame,but RepackSubRequestupdated
to READYFORSTAGING

R one RepackSubRequestsame,without RepackSubRequest

S one RepackSubRequestboth replaced by the information found
in Repack DB

P no RepackSubRequest same, for each Tape found in given Pool
one RepackSubRequestis added

S no RepackSubRequest same, for each Tape found in Repack
System one RepackSubRequestis added

Table 7.2: Usage of the created RepackRequest object for gas and answers from
the server

7.6.4 Repack Server

This section deals with the server part of the new Repack sysh. We are introduced
to its modules and a description about their functionality. Further on we go into
detail and a work ow of the interaction between these modukeas well the Stager
is illustrated (see Figure 7.6).

The Repack server is the main application of the new Repackstgm. It contains the
logic and interacts with the Repack client(s). The detailednternal design is based on
the repack process steps (see Section 7.5) and a clean samaraf functional parts
into modules is necessary to support the idea of robustnesgainst modi cations.
The RepackServer class inherits from the castor::serv@aseServer class and starts
di erent modules in thread pools each responsible for a step the Repack process.
It provides di erent ways to run (eg. run in foreground or as adaemon). For the
correct execution some necessary information has to be eetd in the CASTOR
cong le:

- STAGE HOST, the Stager hostname to contact for all activites (recalling,
staging)

72

Chapter 7. The new Repack

- CNS HOST, the NameServer hostname for le information

- REPACK SVCCLASS, the ServiceClass which is used for defastaging and
migrating les (see Section 7.5)

- REPACK PROTOCOL, the transfer protocol which is used to cog les from
and to tape

When the RepackServer class is instantiated, it rst (in theconstructor) tries to
retrieve the information given in the CASTOR con g le. By default the Repack
system listens on port 62800. It can be changed by setting tle@vironment variable
REPACK _PORT to a valid value.

In case some necessary information is missing, the user getsnessages and the
program is aborted.

After this step the thread pools are created and started. Asavsee further on, this
information is requested by some modules for their us©bserver Patterr) [34].

The DatabaseHelper

The DatabaseHelper'dask is to decouple the database logic from the Repack logic
and thereby implement theBridge design pattern[34]. It inherits from DbBaseObj
and provides methods to access Repack objects in the undertydatabase. In detall,
the DbBaseObj class o ers a service to do this. This serviceses the autogenerated
Repack converter classes, which are not compiled in the skdrlibrary of CASTOR
and are therefore instantiated and registered separatelyhwnever the Repack server
is loaded.

Repack Worker

At the very beginning of the process chain, whenever the reest is received,
an instance is required which handles the incoming requess avell as sending
back responses to the client. This is theRepackWorker It inherits from the

73

Chapter 7. The new Repack

castor::server::IThread class and is started as a thread i ListenerThreadPool
class (see Section 2.2.3). If the validation of an incomindpject as a RepackRequest
is successful, its command eld is checked and the corresjglarg action is executed.
The internal commands between Repack Il client and server dra brief work ow
of each is listed below:

REPACK The tape status is checked by querying the VMGR. If it is
marked as FULL the status of the RepackSubRequest is set to SUBRE-
QUEST_READYFORSTAGING and the RepackRequest is stored in the
database. In case a poolname is given, the VMGR is queried the tapes in
this tape pool and they are added as new RepackSubRequest h® tRepack-
Request. Of course they are also checked for their statusali error occurs the
handling is aborted and the client receives an answer with arror message.

GET _STATUS The RepackSubRequest with the given volume ID is looked up in
the database and if it is successful, the RepackSubRequesthtsby the client
is replaced by the one which was found.

GET _STATUS _ALL All RepackSubRequest which are not archived are retrieved
from database and added to the RepackRequest which was segtthe client.

ARCHIVE The RepackSubRequest in SUBREQUESTFINISHED are set to
SUBREQUEST_ARCHIVED.

REMOVE The RepackSubRequest in SUBREQUESBTAGING and SUBRE-
QUEST_READYFORCLEANUP.

Repack File Stager

For the recall part, we dene the second module: theRepackFileStager
class. Its task is to retrieve a RepackSubRequest from the DHEnh status
SUBREQUEST_READYFORSTAGING, get the lenames from the NameServer
and send a request to the Stager. We only want to store the lesn the diskcache,

74

OCO~NOOITRAWNEF

Chapter 7. The new Repack

but not to receive them on our system. CASTOR Il o ers such a mguest for this
purpose. The StagePrepareToGetRequestauses the Stager to copy the requested
les from tape only to a diskserver, without a subsequent trasfer to the client.

The following description refers to Listing 7.2.

The request is created (line 06) and the StageBubRequesiseach containing a
lename, are added to it (line 12-23). The Stager SubRequestpresents the request
for exactly one le. Later on in Section 7.5 this object is imprtant for the internal
CASTOR Il mechanism.

Finally the StagePrepareToGetRequest is sent to the Stagéost and the returned
CUUID replaces the one from the RepackSubRequest.

The response of the Stager depends on the amount of les whielte sent. In
case of for example 2000 les it takes about 30 seconds, degieg on the load
of the Stager. The RepackFileStager will not store the RepkRequest with the
RepackSegments in the database as long as it does not recéieeresponse. This is
because the returned CUUID replaces the RepackRequest oftas needed to keep
track of the status of the submitted les. This is describedn Section 7.6.4.

/l get a tape
sreq =

m_dbhelper->checkSubRequestStatus(SUBREQUEST READYF ORSTAGING);
Eéstor::Stager::StagePrepareToGetRequest req;
std::vector<std::string> * filelist =

m_filehelper->getFilePathnames(sreq,cuuid);

std::vector<std::string>::iterator filename = filelist ->begin();
while (filename != filelist->end()) {

castor::Stager::SubRequest *subreq =

new castor::Stager::SubRequest();
subreg->setFileName((* filename));
/I this marks the Request as a 'special' one.
subreg->setRepackVid(sreg->vid());
/I specify a protocol, otherwise the call is not scheduled
subreg->setProtocol(ptr_server->getProtocol());
subreg->setRequest(&req);
req.addSubRequests(subreq);
filename++;
}
/I we create the Stager options

75

26

Chapter 7. The new Repack

sendStagerRepackRequest(&req, &reqld, &opts);

27 ..

28

sreg->setCuuid(reqld);
Listing 7.2: The creation of the request

The original Stager SubRequest object was extended by thepackVid eld. This is
set here with the volume id of the tape to be repacked for latasse in the Stager
logic. As is it explained in Section 7.7.3 this informationd used to cause the Stager
to handle this le request di erently from the normal user ore.

Repack Cleaner

The RepackCleaner nishes a running repack process. It polls the database for
RepackSubRequest being in SUBREQUESREADYFORCLEANUP status. If one
is retrieved the RepackCleaner removes the segment entrieshe Repack tables and
to set the RepackSubRequest to SUBREQUESARCHIVED so it is not shown any-
more whenever a user lists the active repack processes (se&in 7.1). Additionally
the related le pathnames are queried in the NameServer ugjrthe RepackSegment
information from the RepackSubRequest and are deleted frothe diskserver. In
detail a remove request through the Stager API functiorstagerrm is created and
sent to the Stager. As the les are now marked to be deleted imé Stager catalogue,
the garbage collector daemon running on the e ected disks&r removes the les
and more free space becomes available.

This is not mandatory since the garbage collector removese$ whenever there is no
space left on the device.

Repack Monitor

The RepackMonitoris responsible for the synchronisation between the Stagench
the Repack system. Repack does not know when a le was recdller migrated.
But this information is needed to provide an overview to the ser as well as
to control the status of a RepackSubRequest. In fact the RepkMonitor is the
instance which changes this state in the recall and migratiophase. As soon as

76

Chapter 7. The new Repack

the StagePrepareToGetRequest was sent to the Stager the ReRSubRequest is
in SUBREQUEST_STAGING (see Section 7.6.4). The RepackMonitor leaves it
in this status as long as there are no les ready for migratianThe le status of
the RepackSubRequest is checked by querying the Stager thgh the Stager API
method stage le _query. To make the query the CUUID is used, which was stored
with the RepackSubRequest after sending it to the Stager (8€Section 7.6.4). The
Stager sends an answer containing for each le a Stager respe with the le
status. These number of le in a status are cumulated by the ReckMonitor and
the RepackSubRequest updated.

As soon as at least one le is ready for migration the status dhe corresponding
RepackSubRequest is changed to SUBREQUESWIGRATING. The statistic
stored with the RepackSubRequest (FilesMigrating, Files&ging, FilesFailed)
shows the number of lesleft in this state. There can be an inconsistency
between the total les and the addition of les in migration and recall state.
The explanation for this is the Garbage Collector of CASTORII It deletes the
migrated les and therefore they are not listed anymore in ta response of the Stager.

77

Chapter 7. The new Repack

NameServer updates tapecopy migrator
A updates
RepackClient
VMGR
. P
Repack Server send job
alidate tape
RepackWorker
get segs store job @
RepackFileStager Slole | DatabaseHelper SRR ’_) L /,“‘
segs get Requests Repack DB N A
query, update job
RepackCleaner ; RepackMonitor
query
. J
w| Stager
clean files -
A"
»

stage files

Figure 7.6: The detailed overview of Repack and its serverrmponents

7.7 The modi ed CASTOR Il Stager Work ow

This section deals with the changes to the involved CASTOR l¢omponents which
are a ected to allow and realize the correct work ow of a Repek process. Those
components are listed at the beginning, followed by the a fational explanation
and their modi cations.

It is intended to attach importance to this section, since iis required for a profound
understanding of Repack Il concerning the internal mechasm of the Stager part.

7.7.1 The aected components

The following parts where changed to achieve the goal of reghéng tapes.

78

Chapter 7. The new Repack

The FILERECALLED PL/SQL procedure

The ARCHIVE _SUBREQUEST PL/SQL procedure

The Stager SubRequest object (autogenerated by Umbrello)

The CASTOR Il Migrator

The CASTOR Il NameServer

Before going into details some, terminology has to be intraded. These are only
explained briey to give a better understanding of the contet. For further details
please refer to the CASTOR documentation [35]. For the sakd completeness the
simpli ed Stager Catalogue schema can be found in Appendix.C

DiskCopy A DiskCopy is the disk orientated representation of a le in he Stager
Catalogue and can be in di erent states, each starting withDISKCOPY _'.

TapeCopy A TapeCopy is the tape orientated representation of a le inhe Stager
Catalogue and can be in di erent states, each starting withTAPECOPY _'.

SubRequest A SubRequest is the representation for a le request int he &ger
Catalogue, see Section 7.6.4.

Example:

If a le is going to be copied from tape to disk the le's DiskCqpy
status is DISKCOPY_WAITTAPERECALL and its TapeCopy status is in
TAPECOPY _TOBERECALLED.

7.7.2 Retrieving Files from Tape

The StagePrepareToGetRequest, sent by Repack Il, triggethe Stager to retrive
the les from tape. The work ow has been introduced in Sectin 2.3.4. In case of
two existing tapecopies of a le of this request, it is not detrmined which tape is

79

Chapter 7. The new Repack

mounted to read the le from. But this is not necessary since &just want to have
the le's data.
The Recaller will keep the tape mounted as long as all les wercopied to disk.

As soon as a le is copied from tape to disk, the Recaller exdes the
FILERECALLED PL/SQL procedure in the Stager database. By doing this
the corresponding entry in the DiskCopy table is set to DISKOPY _STAGED. This
is the point in the normal process chains where we have to clgenthe behaviour.
We don't want the le only to be staged, but directly to be written back to a new
tape. Also the corresponding Stager SubRequest status must extended until the
Repack process is over.

The Migrator requires the diskcopy status in DISKCOPYCANBEMIGR and a
related tapecopy in TAPECOPY_CREATED.

These steps are already implemented in theUTDONEFUNC PL/SQL procedure
in the database. It is used for the use case a user puts a list &s into CASTOR

Il without closing the transfer process after each le. The reated diskcopies in the
database are set to DISKCOPYSTAGEOUT as soon as the le is copied from the
users computer to the diskserver. If the user nishes this ntiircopy process, the sta-
tus of the related diskcopies in the database are set to DISKIPY_CANBEMIGR
and tapecopies in status TAPECOPYCREATED are created.

As seen from above, this is the behaviour which is needed toigger the mi-
gration for the les for a repack process. The recalled le hato be set to
DISKCOPY _STAGEOUT and the PUTDONEFUNC executed. The advantage of
this idea is clear. There is no additional Repack module foré migration part
necessary, which would make the application more complexstead, the decision is
done by the Stager and the les are ready for migration as so@s they are staged
in. There is no delay in long request handling or synchronigj operations between
Repack and the Stager, which would have been the case if Repa@s responsible.
Still, it is important to handle the modi cations precisely because they are also
used for the normal production environment. It has to be ensad that no side

80

Chapter 7. The new Repack

e ects occur for the user recall and migration.

The involved PL/SQL functions, which have to be changed are [EERECALLED
and ARCHIVESUBREQ. The ARCHIVESUBREQ is invoked by the StagerJob
after the FILERECALLED. The changes in the FILERECALLED contains the
decision for the Stager whether the recalled le is in a repkgrocess or if it is a
normal user recall. For this decision, the repackVid inforation of the corresponding
Stager SubRequest is used. If this eld is set, the recall is ia repack process and
the diskcopy status entry has to be set to DISKCOPYSTAGEOUT,; the condition
for the PUTDONEFUNC function.

Figure 7.7 shows the time sequence when the two functions aegecuted in a
successfull recall process. At the end, the StagerJob is teeted and puts the
related SubRequest for the recalled le to SUBREQUESIFINISHED by invok-
ing the PL/SQL function ARCHIVESUBREQ. If all SubRequests kelonging to
one Stager request were handled, they are all put into SUBREEST _ARCHIVED.

ARCHIVESUBREQ
2. Request 3. Request H
arrives arrives

'
.
recaller T >, stagerJob —l!
H [' '

.

' ' T '
WAITTAPERECALL H H H
SubRequest 1 i I': FINISHED . RESTART : READY ' ARCHIVED

J

L} 1] L Ll
'
' WIAITSUBREQUEST i RESTART ! READY : ARCHIVED
SubRequest 2 H : :—: .

' '
H ' '

H WAITSUBREQUEST 1 RESTART ' READY ' ARCHIVED

SubRequest 3 4 A .

start

Figure 7.7: Capture of the states of Stager SubRequests

A very important impact on this change is the consideration o handling two
tapecopies of a le. The scenario is to repack two tapes, botiontaining a tapecopy
of a le. Repack sends a StagePrepareToGet request to the §& for each. In the
actual design, the recall of the second tapecopy is ignorddhe rst one is already
scheduled. This is coherent since the user who sends the secrecall request can

81

Chapter 7. The new Repack

use the rst copy, which is already staged or in a recall pross.

The problem for Repack occurs in the second phase when two ¢éapopies have to
be created again for the migration. Normally the PUTDONEFUNC would insert

as many entries in the tapecopy table as are speci ed in thelEclass 2.3.2 the le
belongs to. It can happen that more than two tapecopies are eated, even if only
one tapecopy is to be repacked. The consequence is that the has more than
the allowed two tapecopies in the CASTOR system. This is ond the side e ects,

which must be avoided.

The redesign is to add a special behaviour in a repack processe. The FILERE-
CALLED procedure passes PUTDONEFUNC the number of active (@t archived)
SubRequests with a valid repackVid eld found in the cataloge, because they
represent the information to create a tapecopy of a le. Figie 7.8 shows the
general internal handling of the tapecopy during a repack press for two tapecopies
of a le. The dotted line between Recaller and the tapes impms that it is not
determined which tape is taken for the tape-to-disk copy peess.

1. send Request

_DJ—-L{ SubRequest }(I Stager e

FileRecalled D DEomnEEE
'
> S SubRequest PL/SQL

Tapecopy 1

g 5.creatds :

:
0 '
n Tapecopy 2
'
0 '

1 to be recallefl

Tapecopy

_____________ 4.triggers
6.checks
.
»| recaller Diskcopy migrator 7.copy

Diskserver
t

Figure 7.8: Repacking two tapecopies

82

=
QOO~NOUITRWNE

11

o el
OhWN

16

=
0~

Chapter 7. The new Repack

CREATEOR REPLACE PROCEDURHBeRecalled(..)
AS repackVid VARCHARR048);

SELECT DiskCopy.id, SubRequest.repackVid, CastorFile.id,..
INTO dci, repackVid, cfid,..
FROMTapeCopy, SubRequest, DiskCopy, CastorFile
WHERE...

-- set the diskcopy

UPDATEDiskCopy SET status = decode (repackVid, NULLO, 6)
WHEREd = dci RETURNINGfileSystem INTO fsid;

IF repackVid IS NOT NULL THEN
SELECT count (*) INTO nbTC FROMsubrequest
WHEREsubrequest.castorfile = cfid
AND subrequest.repackvid IS NOT NULL
AND subrequest.status in (4,5,6);
internalputDoneFunc(cfid, fsld, 0, nbTC);

END IF;

Listing 7.3: The changed PL/SQL procedure in the database

Listing 7.3 shows the new PL/SQL FILERECALLED procedure. Inline 9 the
diskcopy is set to either DIKSCOPYSTAGED (0) or DISKCOPY _STAGEOUT (6)

depending on the value in the repackVid eld in the SubRequeslf it is set, other

SubRequests for Repack are looked up (line 12-15) and the remponding amount
of tapecopies to create are passed to INTERNALPUTDONEFUNCIife 16). An
internal mechanism restarts the SubRequest handling andftar nishing, the new

status is ARCHIVED. In fact, the Stager SubRequest should ridoe archived, be-
cause it belongs to a Repack process and has to exist as longhes le has not

been written to tape. Therefore its 'life' is extended by an @ditional state SUB-
REQUEST_REPACK. A detailed diagram of the new Stager SubRequest stas are
given in Figure 7.7. The importance of this change is explad in the migration
part, when this SubRequest is heeded again to update the NaSexver.

7.7.3 Copying Files back to Tape

The next step is the preparation for the migration part. The ASTOR Il MigHunter
initiates this phase by checking frequently the Stager caliague for les to be written
to tape (their DiskCopy entries are in status DISKCOPYCANBEMIGR and at
least one tapecopy in TAPECOPYCREATED). It creates rows in the table Streams

83

~NOoOOR~rWNE

Chapter 7. The new Repack

according to the number of tape drives speci ed in the Sena€lass and assigns the
tapecopies to them by inserting a row containing the tapecgpd and the created
stream id.

As soon as this is done the RTCPClientD starts for each streamMigrator instance.
Each submits a tape request to the VDQM and after the successful mount in a tape
drive, it sends the data to the assigned tape server via the IPD (see Section 2.10).
During the writing process the Migrator waits for the callbak of the RTCP interface.
After succesful transfer of the le it informs the VMGR to decease the space left
on device by the lesize. Of course the NameServer has to bedagped with the
retrieved new segment information from the tape server.

The last step during the migration is the replacement of the Id le segment
attributes in the NameServer, invoked by the Migrator. It isthe most important
one for Repack, because here the information about the oldp@copy of the le
is removed and this action is not reversible. This functiorigy in the NameServer
was not available and therefore had to be implemented. As so@s the le was
written to tape, the RTCPD returns the new location (tape voume id, le sequence
number, blockid) of the new tapecopy. Until now, the Migrato does not have any
information, whether the segment attributes have to be addeto the nameserver
(the usual case) or to replace another entry (the Repack cgselhese are two
di erent scenarios and two di erent NameServer calls.

The Migrator has the ability to access the Stager cataloguend hence is able to
check the repackVid eld of the corresponding SubRequest ten

UPDATE subrequest SET subrequest.status = 11 --ARCHIVED
WHEREd =
(SELECT subrequest.id

FROMsubrequest, diskcopy,castorfile

WHERHEdiskcopy.id = subrequest.diskcopy

AND diskcopy.status = 10 --CANBEMIGR

AND subrequest.status = 12 --SUBREQUEST_REPACK

1The volume id for migration is received from the VMGR

84

Chapter 7. The new Repack

AND diskcopy.castorfile = castorfile.id

AND castorfile.fileid = :1 --the id of the written file

AND subrequest.repackvid IS NOT NULL ANDROWNUM < 2)
RETURNINGsubrequest.id INTO :2

Listing 7.4: SQL statement for Migrator to check for repack mpcess

Listing 7.4 shows the SQL Statement, which is executed by tleheckFileForRepack
Migrator function. If a valid entry for the leid (passed thr ough PL/SQL parameter
1) exists, the entry of the repackVid eld is returned and the $ager SubRequest
status set to ARCHIVED. This ensures that this SubRequest isiever taken any
more

If this is set, it calls the new Cns.replaceTapeCopyNameServer API function with
the le ID, the tape to repack and the new tapecopy location. A the name of
the function suggests, it replaces a tapecopy entry in thENS. SEG.METADATA
table in the NameServer database with the new le segment imfmation from the
tapeserver. To avoid another selection of this SubRequestis set to ARCHIVED
whenever this statement is executed (line 1).

Figure 7.9 shows the activity diagram of the newCns replaceTapeCopyfunction
on the NameServer side. It reads the new segment attributesofn the stream
and sets the tapecopy number to the one found in the NameSerwdatabase for
the old segments of the old tape. To remove all old entries theew function
Cns. getsmdby copynois called to rst retrieve and then to delete them.

The order of adding and removing segments is not reversibince the constraints of
the NameServer database don't allow two entries for the same with the same copy
number. The function locks the le entry at the beginning andsaves the changements
by committing the database connection when nishedThis guarantees that the
operations are done atomically and not other NameServer ins tance can
interfere .

85

Chapter 7. The new Repack

Figure 7.9: The activity diagram of the new NameServer funigin

86

Chapter 8

Optimisation

Tape storage management should not be a bottleneck for a highate of data input

into CASTOR II. If the resources are used well, a speed up foeading, as well as
writing les can be achieved.

Discovering ine ciencies in the current system, and suggéag improvements, is the
main purpose of this chapter. It is not intended to present iplemented solutions,
but to give ideas for further development.

Fundamental for the the following ideas is Table 8.1. It shosvthe steps which are
necessary to get data from tape and their duration in second$he times are mea-
sured for a T9940B tape drive. The speci cations in red indate optimisations.

A request is started by sending a request for a tape to the VDQMvhich schedules
it. After the library receives the mount request it puts the tape into the "Tape
load" phase. Before data can be read, the drive has to wind tte position of the
le (head is positioned by FSEQ number 3.1.4). The data can mobe read and the
tape rewound afterwards.

87

Chapter 8. Optimisation

Tape Status Time
Request for a tape to be mounteq
in a drive

20-60 sec
Tape load

20-30 sec
Tape ready

about 45 sec
Drive head positioned
Read/Write data 1GB 20-30 sec 10GB 200sec
(estim. for 100MB/sec)

Tape rewinded
P about 45 sec

Tape unload

Table 8.1: The tape handling times for a read/write job

8.1 De nition of Read E ciency

Adapting to the times presented above we can measure the readiency by
de ning the following equation:

. — pure_data_read time
read efficiency administrative _time

whereas

administrative _time = time _of _completeread_operation pure_data_read.time

If we manage to decrease the administrative time, the e ciety increases. This
should be our goal.

88

Chapter 8. Optimisation

8.2 Tape Loading

Looking at the mount time a tape roboter needs for a tape (2003seconds) and
having the geometrical conditions of a library in mind, we e that this time is
mainly determined by the distance from the slot to the tape dve.

It is worth taking a look at this issue and discover, if it can le optimised.

An initial approach is to nd a algorithm, which knows these gometrical conditions
and to nd the closest drive to the tape slot. The informationabout free tape drives
is kept in the VDQM, which also reserves the drives for a reqsiefrom CASTOR.
This is, therefore, the only instance where this functionay can be applied.

The tape library cannot ful Il this idea since the VDQM is the main instance which
coordinates access to the tape drives.

This idea of an algorithm is mentioned here for completeness has not been de-
veloped further on, due to time manners.

8.3 Reading Files from Tape

The idea of optimising the reading of les from tape was origially raised by
the problems of the CASTOR | implementation. For each le regest a tape is
mounted,read and unmounted, independed from other requefstr the same tape.
This has changed in CASTOR II. The Recaller delays the mountfdapes for read
until a sensible number of les is requested. This is alreadgn improvement. In
the case of Repack a great number of les are requested and itti@re the time
reading a tape determines the time a repack process needs. dftirse shortening
this reading time is egliable, so a higher availability of dves for production is
provided.

Traditionally, les have always been read back from a tape byle sequence order.
This is still the case in CASTOR I, even for modern serpentim recording formats.

89

Chapter 8. Optimisation

This is far from optimal. The serpentine track arrangement emoves the simple
access ordering of 'lowest le sequence is always fastest rigtrieve’. Instead, it
is necessary to calculate the distance from the beginning tH#pe (BOT) of the
les, and to retrieve them in ascending order of this distare. This avoids needless
positioning of the tape, saving a great deal of drive time.

A simple example for the advantage of this optimisation canéseen in Figure 8.1.
The le order in le sequence is 1, 10, 15. Comparing the windg distance for this to

the e ord for positioning by user blockid (solid green arrow), the advantage is visi-
ble. Reading the les in order to their distance to BOT decreses even more winding.

File 10 F”T 15
start readin File 1
- 7
o > Y s
o > N\ E"
- N\
: > >—
AN
/
V4
\\
Tracks //
A\, N\
AN
BOT positioning: EOT
— by FSEQ
—_— by User BlocklD
CETTS S sorted in distance to BOT
winding efford:
D Sy kbl
Y -

Figure 8.1: lllustration of the advantage reading les in dstance to BOT

There is less winding of the tape, causes increases of thetiihe of the tape (see
Table 3.2 in Section 3.1.3).

Resulting from the cognitions above, an implementation ofraalgorithm to calcu-
late the distance to the BOT for the CASTOR Recaller part has ¢ be developed.

90

Chapter 8. Optimisation

The Recaller is the only instance which can in uence the reaty from tape. The
tape drive will not change the order. Before sending the paisining request to the
RTCPD the les have to be ordered beginning with the lowesseek time This seek
time and therefore the position on tape can be found by usindh¢ tape charac-
teristic information and the user blockid from the NameSewer. Unfortunately the
positioning block id does not correspond to the real block idn the tape, since the
vendors of the tape drives do not allow to access this numbérherefore, we have
consider tape speci c data. The listed tape properties beloare a prerequisite for
this calculation:

- The total capacity in bytes tcap
- The used tracksetsutkset

- The default blocksizedefblocksize

The following calculations are pseudo C code. It is not intded to present correct
code, but to impart the idea and the leading steps to the reade

By dividing the total capacity by the used tracksets we get te capacity per
track [in bytes]

H _ tca
capacity_per_track = 25

Subsequently we get the number of blocks on one track for thegpe by dividing
this capacity by the default block size of the tape:

— capacity _per _track
blocksper track = =25 =r "~

The resulting blockid on the track:

R — total _blockid
blockid.on_track = Blocks_per irack

We need the number of the track for the calculation of the diieion in which
the data is read from tape. The result of the term can be 0, this why 1 is
added for the correct direction in the next step.

trackno = (int) ;1@ =blockid__ 4 1

ocks_per _track
direction =!(tracknomod2)

91

Chapter 8. Optimisation

Depending on the direction of the head on track the positiorsiexpressed by
the percentage of the full track length. Since the idea is taatculate the time
from the BOT, we need a common denominator of the position fdime and
blocks on track.

if (direction == botto_eof)

— 100:0 blockid _on_track
percentageof _track = blocks_perirack

else

100:0 (blocks_per _track blockid _on _track)
blocks_per _track

percentageof _track =

With this the seek time (in seconds) for the header block of th le can be
derived by the following :

seektime = (int)min _seektime + percentageof _track

max _seektime min _seektime
100:0

Figure 8.2 shows an illustration of the parameters of the adgithm and the resulting
seek time.

Head Label
P seek_time \/
T~ ”
Track } X Data
€E—> < >
min_seektime 100%
< ~)
-~ ” |
max_seektime
BOT EOT

Figure 8.2: Illustration of the parameters seek time algoithm

92

Chapter 8. Optimisation

Some tests made with STK 9940B for a set of 20 les selected a&ndom from a
LTO-3 tape [36].

- 825 seconds to access header data of these les in randomeord
- 800 seconds to access header data of these les in le sequesnrder

- 300 seconds to access header data of these les in distamoenf BOT order

There appears to be almost no 'penalty’ for changing head pbens vertically (ie
moving between tracksets) or reversing direction of read.hls test did not consider
the sizes of the les (a large le will in uence the choice of ext le to read) or
their compressibility. Nevertheless, the results show thahere is considerable room
for optimisation of multi- le reads.

This implementation is done in the CtapesortSegments function and is executed
by the Recaller. The movement of the head is controlled by thtape drive and
therefore not accessible by higher level implementation3his is not a problem,
since we know from Section 3.1.4 that the tape drive alwayslcalates the shortest
path from its actual position to the requested one.

As seen from above, this solution improves the performancaar freading les greatly,

but, there is more space for further optimisation. If the lesize is taken in account,
the result is expected to be better. The idea is to search theext closest start
position of a list of les after the last one. This is not handés here, but should be
considered for future developments.

8.4 Writing to Tape

An optimised writing of data to tape determines the reading bles and is therefore
looking at it more closely. Small les are a problem for CAST® | and for
CASTOR Il. They are expensive to handle and to repack. From Tde 8.1 we

93

Chapter 8. Optimisation

see the loading, positioning and reversing times. The reacciency decreases for
small les, because the pure reading time, compared to the gggate time costs for
retrieving, is very small. In consequence, frequent requedor small les degrade
response in retrieving large les. However, any serpentitape can in principle o er

reasonably fast access times for such les with almost STK 88 like performance
[36]. These small les should all be stored near the BOT regipso they are quickly
accessable.

As seen before (see Section 8.3), we are able to calculate ¢hpacity of one track
depending on the tape type.

Using this and the le size information, an idea is to order tk write sequence to
tape in a way that small les are always written close to the BA. This depend
where the tape drive starts to read. If a used tape is taken famigration, the
sorting algorithm has to take the le information of the last le in account to order
the new list. We cannot ask the drive, because it only return®cation information,
when the data has been written.

If we manage to write small les in the rst 40GB the administrative time for
reading decreases and the e ciency increases. Figure 8.Rigtrates this idea for a
400GB tape like the LTO-3.

~40GB ~360GB
l

Big File Size Area

BOT \
400GB (full tape length) EOT

Figure 8.3: lllustration of the advantage of sorting the ordr to write les.

94

Chapter 9
Results

The results of the development of a new Repack applicationepresented in this
Chapter and a summery of the features is given.

A new application, Repack Il, was developed and implementehanges to the
Stager work ow and some CASTOR components have been made. tWihis new
system CASTOR is now able to repack tapes.

Repack Il has not been proved under production conditions,ub several tests with
the scenarios given by the possible Use Cases in Section 7ith ien tapes of
di erent types assigned to four tape pools showed succedsfiits functionality. The
les on the speci ed tapes were correctly repacked withoutata corruption to the
target tape(s).

Problems like the double tapecopy handling in a repack prose where discoverd
and solved in Section 7.7.2. Two tapes, each containing a gopf a le, very
choosen and successfully repacked to two other tapes. It hast been tested with
more than two tapecopies, since this was never required foAGTOR.

The user in the following summery is related to be the tape opetor.

95

Chapter 9. Results

Repack Il is adapted to CASTOR I

The new Repack system uses the CASTOR Il Stager API and is thefore fully
compliant with it. The CASTOR Il MigHunter and Migrator deal with the disk-
to-tape copy process and can be tuned individually by the SeceClasses used for
repacking les.

Defragmentation of Files

Files are defragmentated in a repack process. The respoisiCASTOR Il Stager
concatinates the le's segments when it is requested to bemied to disk (see second
step in Section 7.5). This major requirement has been fuldd.

Multithreaded in C++

The multi-threaded request handling process from the Repadl server (Repack-
Worker, see Section 7.6.4) adopts to the current CASTOR Il ahitecture and pro-
vides high availablity for its clients.

Robust against program crashes

Repack Il is able to continue a repack process after the apgdition has crashed.
The state of the process is kept in database and not in the menyoTherefore, the
Repack Il server modules are stateless (see Section 7.4.1).

If the Repack server crashes during the submission of thetial Stager request,
it gets unsynchronised with the Stager and will send the Regst again if it is
restarted. By having then two SubRequests in Stager Catalog the FILERE-
CALLED PL/SQL would create another, not allowed, tape copy ball les.
Therefore this part is still vulnerable and has to be improwg Other related problems
such as in uencing the stability of the Repack work ow have ot occurred.

96

Chapter 9. Results

Usage of DLF

Repack Il uses the DLF for logging system messages. They aategorised in di er-
ent levels of severity and the user can access, machine inelegently, these messages
through a web interface. They can be ltered by several proptes (e.g. severity,
time).

Monitored Repack Process

The repack process of a tape is monitored by the Repack Il ser(see Section 7.6.4).
The user can see the progress of one or all repacking tapeshe system. A history
is provided and accessable through the database.

Portablility

The implemented client-server architecture results in méine independence. Both
instancies can run on the same or di erent (distributed) syem.

Multiple ways to repack tapes

By de ning the target tape(s) through the service class, theiser has multiple ways
to do a repack of a tape. The tape operator must know the Sere€lasses, in the
Stager Catalogue, and the tape pools linked to it, to repackhe tape correctly. By
this 1..many source tape(s) can be repacked to 1..many tatgapes. The tape type
may di er.

Usage of Tape Drives is controlable

Since the Stager ServiceClass determines the number of dsvand Repack Il gives
the opportunity to choose the ServiceClass, the user getsntml about the usage of
them. The speed of the repack process of course depends onavedlable hardware
(and tape drives). Fewer drives result in lower performance

97

Chapter 9. Results

In the case of more than one allocated tape drive, and the taegtapepool having
more than one tape, simultaneous copy is achievable.

Performance depends on available Hardware

The performance of the repack process is correlated to theadlable hardware and
their speci cations. More disk servers and tape drives allo higher throughput of
data. The higher the throughput, the higher the speed of reg&ing tapes. Test
were done with only one diskserver and up to two tape drivest furned out that
the diskserver is the bottleneck for the system, since the ides support more
throughout than the diskserver can a ord.

It therefore makes not sence to have one disk server (max. MBYsec 1/0O) and
two tape drives (each 80MB/sec I/0), because the disk servaannot provide full
throughput load for both drives. Means, that the drive e ciency decrease.

Independent from Media Type

Repack Il is independent from the media type, because it deglates the task of
copying les from/to tape to/from disk to the Stager logic. It is a high level imple-
mentation and does not deal with le transfer or tape operabns. In fact, it does not
know anything about the used hardware, but the API's to deal wh (NameServer,
VMGR, Stager).

98

Chapter 10
Conclusion

Looking back at the development phase and the results of theedsed application,
being described in the previous chapters, this chapter wiiresent the experiences
that were made. A personal evaluation of the actual state ohe development will
be given, as well as a brief description of its bene ts and dmsides.

The results from the previous chapters show that the newly deloped Repack
system covers all requirements listed in Section 7.2. By dafmentating les (if
necessary) during a repack process, future hardware intérestape load operations
by the robotic tape libraries are avoided and lost tape spads recovered.

The client-server architecture of Repack Il allows exibity and portability in
terms of running on di erent machines in the same network. Té tape operator can
submit and control Repack processes independently of the [fek server instance.
Since Repack Il allows the unattended automated repackagjrof a tape, operators
do not have to observe the process. Only in cases of an interearor, reported by
the DLF, does he have to intervene. This enables the operattm concentrate on
other tasks. The usual case is to get the status of the runnirigepack processes.
By using the Stager API, Repack Il is robust against internalStager changes,
because the Stager API is rarely changed. This massive regsaof existing
functionality also makes the design of the application cler and it is, therefore,

99

Chapter 10. Conclusion

easier to maintain and extend. This is important since CAST@® Il is used by and
can be changed by external institutes worldwide (see Chapgj. If a developer has
experience with its architecture, he is able to understanda(id extend) Repack Il
quickly.

Chapter 7.4.1 shows that storing information about a repaclprocess in a highly
available database rather than in the memory of the new Repa@pplication, en-
sures easy recovery after system crashes (harddisk failupewer cut, etc.), because
the data is not lost. The Repack logic does not participate inthe internal copy
process, which is outsourced to the Stager which uses higlalailable hardware.
The use of the Distributed Logging Facility was not only a regirement for the
project, but was also very useful for debugging internal pbdems. Especially, if
they occur in multi-threaded applications like the Repackerver is now.

The Optimisation chapter shows that there is space for impx@ment for reading
les from tape. The presented ideas should be developed foer and applied to
CASTOR. The optimisation of le reading for example, resuls in less winding of
tape and therefore a higher life time of tapes is achieved. iBhhas not been empiric
proven, but the theory shows that it has promise 8.3.

The way les are written to tape in uences the time reading ttem back. The idea
of storing small les close to the beginning of the tape, so &he ciency increases,
is one example (see Section 8.4).

Repack Il is expected to be in production soon. External ingttes from Tierl and
Tier2 have also requested it. They cannot use the old Repackince most of them
run CASTOR Il instances. They rely on the early release.

Personal Evaluation

Working in this eld of scienti c activity was an outstandin g experience for me.
The storage scenario at CERN is unique. Developing a new s for such a
sensitive component as Repack, was intellectually stimuiag for me. It gave me
the opportunity to deepen my knowledge about tape storage magement and the

100

Chapter 10. Conclusion

related problems.
The responsiblity for creating a new application, which is sed to support the work
of hundreds of scientists worldwide, was a greatly rewardjnexperience.

101

Chapter 10. Conclusion

102

Appendix A

Repack Class Diagram

103

01

Figure A.1: The complete Repack class overview

wrelbeiq sse|D yoeday ‘v xipuaddy

Appendix B

Repack Sequence Diagram

Appendix B. Repack Sequence Diagram

A T A

\\\\\ T pllt b b

Figure B.1: The complete Repack sequence digram

106

Appendix C

Stager Catalogue Schema

107

Appendix C. Stager Catalogue Schema

Figure C.1: The simpli ed Stager Catalogue schema

108

Appendix D

CD Contents

PDF of this thesis
Source code of the CASTOR project
PDF les of the electronically available references

All images used in this thesis

109

Appendix D. CD Contents

110

Appendix E

Glossary

ALICE - A Large lon Collider Experiment at CERN's Large Hadrans Collider
API - Application Programming Interface
ATLAS - A Toroidal Large Hadrons Collider ApparatuS

BOT - Beginning Of Tape

CASTOR - CERN AdvancedSTOR age manager
CCM - Con guration Cache Manager

CDB - Con guration Data Base

CERN - European Organisation for Nuclear Research
CDR - Central Data Recording service

CMS - The Compact Muon Solenoid
CVS - Concurrent Versioning System

DLF - Distributed Logging Facility
DBMS - Database Management System

EOT - End Of Tape

FNAL - Fermi National Accelerator Laboratory
GridFTP - Grid File Transfer Protocol

HSM - Hierarchical Storage Management

IBM - Industrial Business Machines

111

Appendix E. Glossary

LCG - LHC Computing Grid project (Distributed Production Environment
for Physics Data Processing)

LEMON - LHC Era Monitoring

LEP - Large Electron Positron collider

LHC - The Large Hadrons Collider

LHCb - The Large Hadrons Collider study of CP violation in B-neson decays
LTO - Linear Tape Open

Quattor - System Administration Toolsuite

RFIO - Remote File Input/Output

RTCPD - CASTOR Remote Tape Copy Daemon
RTCPClientD - CASTOR Remote Tape Copy Client Daemon
SAN - Storage Area Network

SLC - Scienti ¢ Linux Cern

STK - StorageTek

UML - Uni ed Modelling Language

VDQM - CASTOR Volume and Drive Queue Manager
VMGR - CASTOR Volume Manager

XMI - XML Metadata Interchange
XML - Extensible Markup Language

112

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Hobbes Internet Timeline, Webpage,
http://www.zakon.org/robert/internet/timeline/

CERN/LHCC "Technical Design Report", Presentation,
http://doc.cern.ch/archive/electronic/cern/preprint s/Ihcc/public/Ihce-2005-019.pdf,
June 2005

Les Robertson, "LCG Overview", Presentation,
http://les.web.cern.ch/les/talks/LCG%200verview%20-%20aug06.ppt,
August 2006

Castor Presentation at the Post C5 meeting, Presentatip
http://castor.web.cern.ch/castor/presentations/2006/Castor _C5Presentation.pdf
June 2006

COmmon Muon Proton Apparatus for Structure and Spectrapy,
Webpage,http://wwwcompass.cern.ch/compass/

CP Violation Experiment homepage, CERN,
Webpage,http://na48.web.cern.ch/NA48/Welcome.html

Computer cluster,
Webpage,http://en.wikipedia.org/wiki/Computer _cluster

David A Patterson, Garth Gibson, and Randy H Katz, "A Casefor
Redundant Arrays of Inexpensive Disks (RAID)',
http://www2.cs.cmu.edu/ garth/RAIDpaper/Patterson88. pdf

Bernd Panzer-Steindel, CERN, Presentation,"CASTOR2 grformance
and reliability”,

http://indico.cern.ch/getFile.py/access?contribld=1 4&sessionld=4
&resld=1&materialld=slides&confld=2916

113

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

StreamLine SL8500 Modular Library System, Document,
http://www.storagetek.com/upload/documents/TC0018B _SL850Q0C.pdf,
December 2005

IBM, "IBM System Storage TS3500 Tape Library", Documet)
ftp://ftp.software.ibm.com/common/ssi/rep _sp/n/
TSD00872USEN/TSD00872USEN.PDF

Charles Curran, "Data Services Tape Service Scenario0Z", CERN,
Webpage, http://it-div-ds.web.cern.ch/it-div-ds/HO/t ape 2007.html,
August 2006

Quattor, Webpage http://quattor.org, December 2005

German Cancio and Piotr Poznanski."Managing ComputeCentre
machines with Quattor”, Presentation,
http://quattor.org/documentation/presentations/quat tor-c5-12122003.pdf,
December 2003

Miroslav Siket, German Cancio, David Front, Maciej Steniewsk. "Lemon
Monitoring" , Presentation,
http://lemon.web.cern.ch/lemon/doc/presentations/le mon-bologna-2005.ppt,
May 2005

LHC Era Monitoring (Lemon), Webpage http://cern.ch/lemon,
December 2005

Umbrello UML Modeller, Webpagehttp://umbrello.org, December 2005

Object Management Group, UML 2.0, Webpage,
http://www.omg.org/technology/documents/formal/uml. htm

SUN JavaBeans technology, Webpage,
http://java.sun.com/products/javabeans/ June,2006

Olof Barring, Ben Couturier, Jean-Damien Durand, EmiKnezo,
Sebastien Ponce, "Storage Resource Sharing with CASTOR",
Presentation,
http://castor.web.cern.ch/castor/presentations/2004/MSST2004/
MSST2004-CASTOR-1.pdf 2004

Matthias Brager, "Redesign and Functional Extensiorof the Robotic
Tape Queueing System within the CASTOR HSM", December 2005

114

Bibliography

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ross N. Williams.. "A Painless Guide to CRC Error Deteabn
Algorithms", Webpage, http://www.ross.net/crc/downloa d/crc _v3.txt,
August 1993

P.Deutsch, J-L. Galilly, "ZLIB Compressed Data Format $eci cation”,
Document, http://www.ietf.org/rfc/rfc1950.txt

Allan G. Reiter, "UNIVAC | Computer System",
Webpage,http://mywebpage.netscape.com/reitery2k/unvacl.htm

University Klagenfurt, "Magnetic Tape”,
Webpage,http://cs-exhibitions.uni-klu.ac.at/index.php?id=221

Linear Tape Open (LTO) The LTO, Webpage,http://www.It 0.org, Mai
2006

Exabyte, "LTO Tape Drive RoadMap", Presentation

H. Cacote, C. Curran, "IBM 3592 EO05 tests", Presentatio, December
2005

V. Bahyl, H. Cacote, C. Curran , "STK T10000A tape drive’
Presentation, April 2006

IBM TotalStorage 3592 Tape Drive Model J1A, Webpage,
http://www.nctgmbh.de/download/3592TapeDriveModelJ1A.pdf,
December 2005

Novastor TapeCopy, Webpage,
http://interchange.novastor.com/datasheets/tapecopyhtml

IBM Tioli Tape Optimizer, Webpage,
http://www-306.ibm.com/software/tivoli/products/tap e-optimizer-zos/

C.Curran, "Data Services Testing of IBM 3592 drives antBM 3584
robot",
Webpage,http://it-div-ds.web.cern.ch/it-div-ds/HO/a cceptance.html

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissas. "Design
Patterns: Elements of Reusable Object-Oriented Softwarg"
Addison-Wesley, 1994

The Castor Documentation,
Webpage,http://castor.web.cern.ch/castor/docs.htm

115

Bibliography

[36] C. Curran, CERN, "Data Services Tape Use Optimisatioris
Webpage,http://it-div-ds.web.cern.ch/it-div-ds/HO/o ptimisations.html

2005

[37] C.Curran, J. P.Baud, F.Collin, "Forum 2000 T9940A tests",
Presentation, 2000

116

	Introduction
	Thesis Overview
	Structure of this Document
	Validation of this Document
	Acknowledgement
	Prerequisites

	The Castor Project
	History
	General Overview
	Disk Servers
	Tape Libraries
	Technical Information

	Architecture
	The Components
	The Central Services
	The Stager Logic
	The Recall of Files
	The Migration of Files

	What is Repack?
	Introduction to Tapes
	History
	Current Use
	Organisation of Tapes
	Organisation of Files on Tapes

	The Reasons in Detail

	The old Repack
	Introduction
	Architecture

	Analysis and Design for a new Repack
	Limitation
	Requirements

	Alternative Solutions
	IBM Tivoli Tape Optimizer on z/OS
	Novastor TapeCopy
	Result
	Conclusion

	The new Repack
	Use Cases
	Requirements
	The Definition of a Repack Process
	Architecture
	Software Framework

	High Level Design
	Low Level Design
	The Data Model
	The State Diagram
	Repack Client
	Repack Server

	The modified CASTOR II Stager Workflow
	The affected components
	Retrieving Files from Tape
	Copying Files back to Tape

	Optimisation
	Definition of Read Efficiency
	Tape Loading
	Reading Files from Tape
	Writing to Tape

	Results
	Conclusion
	Repack Class Diagram
	Repack Sequence Diagram
	Stager Catalogue Schema
	CD Contents
	Glossary
	Bibliography

