
Development of a Performant

Defragmentation Process for a Robotic

Tape Library within the CASTOR HSM

by

Felix Ehm

A thesis submitted in partial ful�llment of the requirements for the degree

Diplom-Informatiker (Fachhochschule)

at the

University of Applied Sciences Wiesbaden

Academic Unit of Information Technology

Examiner at academy: Prof. Dr. Detlef Richter

Examiner at company: Dr. Sebastien Ponce

Supervisor: German Cancio-Melio

Company: CERN, European Organisation for Nuclear Research

Erkl•arung

Hiermit erkl•are ich an Eides statt, dass ich die vorliegende Diplomarbeit selbst•andig

und nur unter Verwendung der angegebenen Quellen und Hilfsmittel verfasst habe.

Ort, Datum Unterschrift Diplomand

Erkl•arung zur Verbreitungsform

Hiermit erkl•are ich mein Einverst•andnis mit den im folgenden aufgef•uhrten Verbrei-

tungsformen dieser Diplomarbeit:

Verbreitungsform ja nein

Einstellung der Arbeit in die Bibliothek der FHW X

Ver•o�entlichung des Titels der Arbeit im Internet X

Ver•o�entlichung der Arbeit im Internet X

Ort, Datum Unterschrift Diplomand

"We see only what we know."

Johann Wolfgang von Goethe (1749-1832) German poet.

Abstract

Modern magnetic tape technology is used at the European Centre for Nuclear Re-

search [CERN] for permanent storage of data from high energyphysics experiments.

CERN is the largest particle physics institute in the world,and with the start of

data taking from the Large Hardon Collider [LHC] experiments in 2008 the technical

infrastructure for a predicted �fteen petabyes per year of data has to be provided.

To ensure high data integrity for the unique particle events, which will be used for

analysis in the following decades, the development and maintenance of storage is

vital.

Several areas for enhancement within the CERN developed HSMsystem, CASTOR

(Cern Advanced STORage Manager), were discovered during the testing phase of

this technical infrastructure. In particular the fragmentation of �les over several

tapes and the e�ect of this problem on �le retrieval time are signi�cant issues and

the main topic of this thesis.

In this thesis an analysis of these problems is made. Their solutions, in terms of

performance improvements applicable to the robotic tape libraries currently used at

CERN, are elaborated upon and presented. The implementation of a new defrag-

mentation process is presented.

Contents

1 Introduction 1

1.1 Thesis Overview . 4

1.2 Structure of this Document . 4

1.3 Validation of this Document . 5

1.4 Acknowledgement . 6

1.5 Prerequisites . 7

2 The Castor Project 9

2.1 History . 10

2.2 General Overview . 10

2.2.1 Disk Servers . 11

2.2.2 Tape Libraries . 13

2.2.3 Technical Information . 16

2.3 Architecture . 22

2.3.1 The Components . 23

2.3.2 The Central Services . 25

2.3.3 The Stager Logic . 26

2.3.4 The Recall of Files . 27

2.3.5 The Migration of Files . 28

I

Contents

3 What is Repack? 31

3.1 Introduction to Tapes . 32

3.1.1 History . 32

3.1.2 Current Use . 32

3.1.3 Organisation of Tapes . 34

3.1.4 Organisation of Files on Tapes 36

3.2 The Reasons in Detail . 37

4 The old Repack 41

4.1 Introduction . 41

4.2 Architecture . 42

5 Analysis and Design for a new Repack 45

5.1 Limitation . 45

5.2 Requirements . 49

6 Alternative Solutions 51

6.1 IBM Tivoli Tape Optimizer on z/OS 51

6.2 Novastor TapeCopy . 52

6.3 Result . 52

6.4 Conclusion . 53

7 The new Repack 55

7.1 Use Cases . 55

7.2 Requirements . 58

7.3 The De�nition of a Repack Process 59

7.4 Architecture . 59

II

Contents

7.4.1 Software Framework . 59

7.5 High Level Design . 62

7.6 Low Level Design . 65

7.6.1 The Data Model . 65

7.6.2 The State Diagram . 69

7.6.3 Repack Client . 69

7.6.4 Repack Server . 72

7.7 The modi�ed CASTOR II Stager Workow 78

7.7.1 The a�ected components . 78

7.7.2 Retrieving Files from Tape . 79

7.7.3 Copying Files back to Tape 83

8 Optimisation 87

8.1 De�nition of Read E�ciency . 88

8.2 Tape Loading . 89

8.3 Reading Files from Tape . 89

8.4 Writing to Tape . 93

9 Results 95

10 Conclusion 99

A Repack Class Diagram 103

B Repack Sequence Diagram 105

C Stager Catalogue Schema 107

D CD Contents 109

III

Contents

E Glossary 111

Bibliography 116

Index 116

IV

List of Figures

1.1 Illustration of the LHC and the four experiments 2

1.2 The CDC3800 used in 1967 at CERN to process the Swiss election . . 3

2.1 Illustration of data transport between Tier zones 10

2.2 Data storage in CASTOR HSM . 11

2.3 Disk server network utilisation over one year period 12

2.4 Rack with disk servers installed at CERN, August 2006 13

2.5 Tape server network utilisation over the last year 15

2.6 The STK SL8500 tape library installed at CERN, August 2006 15

2.7 The IBM 3584 tape library installed at CERN, August 2006 16

2.8 Illustration of the generated code from Umbrello 19

2.9 Capture of the framework for multi-threaded daemons class diagram . 21

2.10 The overview of the CASTOR II architecture 23

3.1 Illustration of reading / writing data to tape. 35

3.2 The �le sequence number for new data 36

3.3 Illustration of the optimisation e�ect of repack on tapes 39

4.1 Sequence diagram for Repack I . 43

7.1 Use case diagram for Repack client56

V

List of Figures

7.2 The activity diagram . 63

7.3 Repack II interaction with a subset of CASTOR II 65

7.4 The Repack data model . 68

7.5 The states of a RepackSubRequest 69

7.6 The detailed overview of Repack and its server components 78

7.7 Capture of the states of Stager SubRequests 81

7.8 Repacking two tapecopies . 82

7.9 The activity diagram of the new NameServer function 86

8.1 Illustration of the advantage reading �les in distance to BOT 90

8.2 Illustration of the parameters seek time algortithm 92

8.3 Illustration of the advantage of sorting the order to write �les. 94

A.1 The complete Repack class overview104

B.1 The complete Repack sequence digram106

C.1 The simpli�ed Stager Catalogue schema 108

VI

Chapter 1

Introduction

The European Centre for Nuclear Research [CERN] is the largest institute for

nuclear physics in the world. Since the 1950s fundamental research in this �eld of

activity has been conducted. Not only has this research inuenced the basic pillars

of science, but our daily life has been a�ected by the technological developed for the

experiments. The World Wide Web [WWW], initially used to facilitate the sharing

and of data and information among researchers, was one of these technologies �rst

presented in 1991 by Tim Berners-Lee [1].

Todays e�ords greatly exceed technical dimensions of thoseearlier experiments. The

plans for a new generation of experiment facilities were decided at the end of the

1980s. The Large Hadron Collider [LHC] will become the world's largest particle

accelerator. It is being built in a circular tunnel, 27 kilometers in circumference,

and buried around 100 to 120 meters underground. It straddles the Swiss and

French borders on the outskirts of Geneva.

Its purpose is to accelerate particles up to slightly below lightspeed and force them

to collide in one of the four High Energy Physics [HEP] experiments ALICE (A

Large Ion Collider Experiment), ATLAS (A Toroidal LHC Appar atuS), LHCb

(LHC study of Charge Parity) and CMS (Compact Muon Solenoid). Each target

at di�erent �eld of nuclear physics and, like LHC, are currently being constructed.

1

Chapter 1. Introduction

Figure 1.1 shows the arragement of these experiments at the LHC tunnel.

Figure 1.1: Illustration of the LHC and the four experiments

With the start of the experiments in 2007 / 2008 a large amountof data has

to be managed. After �ltering the raw data from about 40 million particle

collisions per second from the detectors, between 100 and 1000 megabytes per

second has to be stored permanently. Running the experiments for seven months a

year results in about 15 petabytes of permanent storage requirement [2] [3] each year.

The Information Technology Department [IT-DEP] at CERN is responsible for pro-

viding this storage and analysis infrastructure. The IT-DEP develops in-house solu-

tions if commercial product do not exist. But not only storing this information for

2

Chapter 1. Introduction

later analysis is important: the data integrity of the results also has to be ensured

for the subsequent decades, as well. For this, magnetic tapetechnology has been

choosen.

Since the introduction of computers at CERN, magnetic tape has been used to store

data (see Figure 1.2). They have been found to be a reliable and cheap solution.

Tape libraries organise tapes and provide a robotic controlmechanism to load them

into tape drives. They are very expensive and reading data from tape takes much

more time than from disk, but compared to a disk solution for the same space, they

are cheaper. Disks are faster in access times, but need power, produces heat and are

more expensive in megabytes per cost unit.

However, tapes have to be copied from time to time to other tapes to prevent data

loss. The reasons for which are presented in this thesis. Several areas for enhance-

ments to this process motivates us to deal with this topic.

Figure 1.2: The CDC3800 used in 1967 at CERN to process the Swiss election

3

Chapter 1. Introduction

1.1 Thesis Overview

This thesis has been developed over a six months period at CERN with a preceding

internship of three months. Its aim is to describe a subset ofthe problems related

to tape storage management for robotic tape libraries used at CERN and to �nd

suitable, performant solutions for them. Speci�cally the idea of defragmentation of

�les stored on tape will be the main subject of this thesis.

The following are the key goals of the thesis:

� Analysis of the current system

� Evaluation of available methods of �le defragmentation

� Implementation of a new system called'Repack II'

� Elaborate on new possibilities to optimise tape related activities

1.2 Structure of this Document

This section will give an overview of this document's sequential structure. The

CASTOR project will be described briey in Chapter 2, its history presented and

the current architecture will be given. The interaction of its main components

is explained by describing the steps to store/retrieve �lesto/from the robotic

tape library. This introduction to its functionality is necessary to understand the

developments, which will be presented later in this thesis.

Chapter 3 will show how this thesis is related to the topic "Repack". An analysis of

the implementation is provided in Chapter 4. It will be concluded in Chapter 5 that

the current system is not optimal and does not satisfy the requirements presented

in Section 5.2 for CASTOR.

4

Chapter 1. Introduction

Alternative solutions will be researched in Chapter 6, which conclude that the

development of a new system is unavoidable and has to be achieved.

The design and implementation of a new application will, in Chapter 7, be de-

scribed in depth, focusing on structural design decisions and possible alternatives.

Encountered problems, as well as ways to overcome them will be mentioned.

In Chapter 8 new considerations and partial solutions for optimising state-of art

functionality in CASTOR will be presented.

At the end of this document, a personal evaluation will be given to conclude the

results. and discuss the potential future developments.

1.3 Validation of this Document

The validation of this document is based on the CASTOR II project. Changes in the

architecture have inuence on the presented developments and have to be considered.

5

Chapter 1. Introduction

1.4 Acknowledgement

I am deeply indebted to Professor Dr. D.Richter, Universityof Applied Sciences

Wiesbaden, whose help, personal guidance and encouragement has provided the

basis for the present thesis.

My sincere thanks to Dr. Sebastien Ponce, CERN IT-FIO-FD, and Dr. Giuseppe

Lo Presti, CERN IT-FIO-FD for their vital support, construc tive comments and

ideas.

During this work I have collaborated with many colleagues for whom I have great

regard, and I wish to extend my warmest thanks to all those whohave supported

me in my work at the CERN IT Department. In particular I would l ike to thank

Dr. Alasdair Earl and Dennis Waldron for their language support.

I warmly thank Professor Dr. D.Eversheim, University Bonn,Department of Physics

and Astronomy Faculty of Mathematics and Science, for his help and advice.

Special thanks to Anja Schmidt-Amelung, Anna-Carol Burtoft, Angela Bray, Ju-

dith Naef, Christian Szczensny for their guidance and distraction in non enjoyable

moments.

I owe my loving thanks to my family, especially to my parents Christoph and

Gabriele Ehm. Without their encouragement, support and patience throughout my

education and studies I would have not been able to �nish thiswork.

Geneve, Switzerland, August 2006

Felix Ehm

6

Chapter 1. Introduction

1.5 Prerequisites

To fully understand the technologies and �elds this thesis builds upon, readers

should be familiar with modern storage and network technologies such as servers,

clustering and grid computing. This document contains functionality descriptions

based on C++ and SQL (Structured Query Language) code extracts. It is assumed,

that the reader is acquainted with these as well as object orientated programming

paradigms such as C++. Common technology will be described only briey, while

CERN and project speci�c areas are discussed in detail. Later in this thesis common

terminologies with reference to relational databases are used and described only

briey.

The target audience for this document are developers in this�eld and also

newcomers to the CASTOR software development team.

Readers should be familiar with modern software development paradigms, such as

Software Design Patterns. A wide variety of such patterns will be mentioned in this

document, and even though the pattern's basic meaning will be paraphrased, there

will not be an in depth description.

When new terms are �rst introduced, they are printed'Cursive'. Words that are

'Bold' are such to emphasise their importance.

Citations are formatted in the following way: [3]. The number in the citation refer

to the corresponding bibliography at the end of this document. If the bibliography

entry is an website, the date indicate the last visit.

Wherever "he" and "his" is used in this document, both genders are addressed.

7

Chapter 1. Introduction

8

Chapter 2

The Castor Project

The CASTOR (CERN Advanced Storage Manager) project is a hierachial storage

management system [HSM] developed at CERN to provide a storage service for

all physics data. Files can be stored, listed, retrieved andaccessed in CASTOR

using command line tools or applications built on top of the RFIO (Remote File

Input/Output).

These �les may be migrated between front-end disk and back-end tape storage.

The CERN Data Recording Service [CDR] uses CASTOR to transport data from

the experiment areas to the central storage. CASTOR is continuously enhanced for

the LHC experiments and, as such, has been integrated with Grid technologies.

Currently CASTOR manages over 50 million �les representingabout 5 petabytes

of data. The future requirements estimate CERN will need about 15 petabytes

per year of storage with an input of 4 gigabytes per second [GB/s] while running

experiments. It also has to cope with about 30.000 concurrent �le requests with

about 1 million �les on disk [4].

Since CERN is not able to manage and provide all data storage required by the

experiments on site, external institutes in 29 countries o�er additional storage and

CPU resources. These are classi�ed into tiers related to their storage and CPU

capacity. The Tier0 (CERN) does the data acquisition, primary storage and the

9

Chapter 2. The Castor Project

initial processing prior to distribution to the Tier1 sites. Currently, 11 institutes in

Tier1 are connected to CERN, and to each other, via an opticalprivate network.

Another 40-50 institutes in the Tier2 zone retrieve data from Tier1 sites via the

internet. Tier1 sites also mainly use CASTOR as their storage solution.

Tier0

Tier 1

Tier 2

CERN

Figure 2.1: Illustration of data transport between Tier zones

2.1 History

CASTOR is an evolution of SHIFT (Scalable Heterogeneous Integrated FaciliTy)

started in the early 1990s. Its architecture was developed and introduced in 1999 to

address the immediate needs of the NA48 [6] and COMPASS [5] experiments and

also to provide a base that would scale to meet the LHC requirements. Increasing

storage resources lead to a revision of the architecture in 2003. With clusters [7]

of 100s of disk and tape servers, the automated storage management faced similar

problems to CPU clusters management. The idea was to create astorage resource

sharing facility consisting of a plugable framework ratherthan total solution.

2.2 General Overview

This Chapter gives an short introduction of the HSM concept and how it is realized

from the hardware point of view for CASTOR at CERN.

10

Chapter 2. The Castor Project

As seen in Figure 2.2 user data is copied �rst from the user resource to disk servers

(front-end) and secondly copied to tape (migrated) in a tapelibrary (back-end). This

idea of 'bu�ering' data allows the system to optimise the disk to tape copy process

by bundling data before writing to tape. This is the same way that the user gets

a �le from CASTOR. Data is copied from tape to disk (recalled)and then to the

users resource.

Figure 2.2: Data storage in CASTOR HSM

2.2.1 Disk Servers

Disk servers are a form of disk storage that hosts �les on a network available

resource. They do not need to be equipped with high-end CPU, but must have

enough disks and the ability to sustain high I/O load to support a large amount of

data.

Currently there are about 200 disk servers installed in the Computer Centre at

CERN 1, used by CASTOR. This number is going to be enlarged by another 150

1Status from August 2006

11

Chapter 2. The Castor Project

by the end of 2006. In total, about 10.000 disks in 350 disk servers are going to

o�er about 7 petabytes of native space. They are connected via Gigabit Ethernet

technology which allow a theoretical input/output transfer speed of 200 megabytes

per second [MB/s] . In production, this provides 70 MB/s on average and 80-100

MB/s peak. Each disk server provides up to �ve terabytes overseveral �le systems.

Typically each system has two RAID [8] controllers that ensure high data integrity

by replicate data among 12 drives, which are con�gured as twosix disk RAID-5

arrays.

This huge number of machines is managed by Quattor which is introduced in

Section 2.2.3.

Figure 2.3 shows the network in/output of the CASTOR disk server cluster

monitored by Lemon 2.2.3 during the last year2. Massive test scenarios during the

IT Data Challenge [ITDC][9] in March, April and May showed that CASTOR and

the underlying disk servers can already deal with data inputrates up to 2.2GB/sec.

Figure 2.3: Disk server network utilisation over one year period

2August 2005 to August 2006

12

Chapter 2. The Castor Project

Figure 2.4: Rack with disk servers installed at CERN, August2006

2.2.2 Tape Libraries

At the moment CERN uses four Powderhorn 9310 robotic tape libraries from

StorageTek [STK] placed for disaster planning reasons in two di�erent buildings.

Each library has 22 9940B tape drives and space for up to 6,000tapes. This gives

a maximum total storage capacity of 600-1,200 terabytes. Asmentioned in the

introduction, CASTOR has to store about 15 petabytes per year with a troughput

of 4 GB/s. To ful�ll these needs in the near future, the latestrobotic tape library

generation from IBM (IBM 3484) and STK (STK SL8500) were installed in May

2006.

Both are based a modular library concept and are easily extentable. The STK

SL5800 system has the highest expansion potential with a possible storage capacity

of 120 petabytes when using 300,000 tapes with 2,048 tape drives. By using four

'handbots' per module STK ensures the quick loading of tape into a drive and high

fail-safeness (redundant handbots). It can be equipped with 9940, 9840, SDLT,

LTO or T10000 tape drives in any mixture [10].

The IBM 3484 library has a maximum capacity of 3.1 petabytes native capacity

when using 6,260 tape cartridges with 192 tape drives. As well as STK, IBM

13

Chapter 2. The Castor Project

prevents failures by having (only) two robotic arms in the role of 'accessors' [11].

Currently3 the IBM library is installed in this con�guration, whereas the STK

library is installed with 5 modules containing around 10,000 storage slots with 5

petabytes of data and 64 drives [12]. In both cases, drives and media types may

be changed to increase the total capacity. The presented speci�cation refers to a

con�guration with LTO-3 (Linear Tape Open, 3rd generation) tapes.

For each tape drive in both libraries, dedicated servers (tape servers) deal with the

copy process to tape. These are not vendor speci�c and each can connect to any

drive via �bre channel technology, which supports data transfer rates up to 400

MB/s. Tests were successful and both now run in production. The scenario report

for 2007 concludes that they are both candidates for data services, since the �nal

architecture is not yet decided [12]. From the results, and future prospects of tape

development, one may assume that the STK solution is to be preferred, because

its tape media is re-usable for the next generation of drives(1 terabyte/tape with

estimated 200 MB/s recording speed [12]).

Independent from this decision, which is to be taken soon, the estimated total tape

space requirement at CERN is 18 petabytes. This has to be installed and tested

before the experiments commence.

Figure 2.5 is the plot from the summon network in/output of tape servers during

the last year, by Lemon 2.2.3. Conspicious is again the high load during the ITDC

tests from March to May where input rates of up to 1.5GB/sec were reached.

3Status of installation : July 2006

14

Chapter 2. The Castor Project

Figure 2.5: Tape server network utilisation over the last year

Figure 2.6: The STK SL8500 tape library installed at CERN, August 2006

15

Chapter 2. The Castor Project

Figure 2.7: The IBM 3584 tape library installed at CERN, August 2006

2.2.3 Technical Information

This Section explains some tools and technology used throughout the CASTOR II

project. It is important to understand their usage and the advantages for CASTOR

IIas this is necessaryto understand the decisions taken in Chapter 7. However, their

full details are outside the scope of this thesis and are therefore discussed briey.

� The Quattor Administration Tool

� The Lemon Tool

� The Distributed Logging Facility

� The Umbrello UML Designer

� Framework for Multithreaded Daemons

� Services and Converters

16

Chapter 2. The Castor Project

The Quattor Administration Tool

Quattor is a CERN developed system administration toolkit for installing/updating

software packages on clusters and farms, as well as for con�guring/managing them

[13]. Currently around 3900 machines at CERN are managed by Quattor.

They are organised in clusters, subclusters and nodes, where each node can be

assigned a previously speci�ed pro�le. The pro�les containinformation such as soft-

ware packages (and version numbers) as well as network related con�guration (e.g.

domainname). Since the computers at CERN have a great variety of functionality

(analysis of data, mail, storage,etc.) the number of pro�les is about 5150, although

currently only 3900 machines are installed.

This tool allows service managers and system administrators to add/remove the

machine easily to/from a cluster, or redeploy it for anotherpurpose [14]

The Lemon Tool

The Lemon (LHC Era Monitoring) tool is a client-server monitoring system used

to retrieve and present monitoring information through a web-based interface [15] .

Each machine has di�erent sensors, which collect data and report it to the Lemon

server. The Lemon server stores it in a measurement repository. This enables the

system administrators to see if a machine has a problem e.g. defective power supply

or crashed hard disk. Furthermore, it provides the history of recorded values from

the sensors, from which plots can be created [16] [15]. The client is installed on every

machine at CERN and is therefore, in every Quattor pro�le (see Section 2.2.3).

The Distributed Logging Facility

The "Distributed Logging Facility" [DLF] is designed for centrally logging messages

and accounting information from CASTOR I & II services/facilities in a relational

database. The framework consists of a DLF server daemon acting as a centralised

collector of log messages; a client API for writing log messages; and a web interface

for retrieving the messages once they have been stored in thedatabase. The message

17

Chapter 2. The Castor Project

itself can be assigned to one of ten di�erent severity levels.

The DLF framework was completely re-written in 2006 to address issues of data

management, scalability and recoverability within the numerous framework compo-

nents. As a result, the server now has the capability to handle 2,500 messages per

second with an average of �ve parameters each (3.75 million rows of data every �ve

minutes).

The client API is asynchronous. This means that the client applications do not

have to wait for the DLF server to acknowledge receipt of a message and can con-

tinue normal functionality unhindered by any DLF server related issues or network

problems.

The DLF server itself is essentially a memory cache, which acts as a gateway between

the DLF clients and a relational database. The internal cache, or queue, has the

capacity to store a default 250,000 messages pending database insertion.

The Umbrello UML Modeller

The "Umbrello UML Modeller" [Umbrello] is an open source software project to

design Uni�ed Modelling Language [UML] diagrams for Linux operating systems

[17]. These diagrams are highly recommended for structuring and documentation

during the development of new applications. Umbrello uses the XML Metadata

Interchange [XMI] speci�cation to store the information about the designed objects.

For the CASTOR II project the following diagrams are used andpresented in this

document:

� Use cases

� Class diagrams

� Activity diagrams

� State diagrams

� Sequence diagrams

18

Chapter 2. The Castor Project

Umbrello was chosen because of its additional ability to generate C++ code from

the UML class diagrams. It has been used by the CASTOR development team since

2005. The result is that the developer designs the data modelof the new application

and the codegenerator creates C++ classes with getter and setter methods for spec-

i�ed attributes. These do not contain any logic and can therefore, be compared to

Sun'sJavaBeanstechnology [19]. This generation of code was adapted to the needs

of CASTOR II. It also o�ers SQL statements to create the corresponding relational

database schema as well as theconverter classes enabling di�erent representations

for the object (see Section 2.2.3).

The tablenames correspond to the names of the classes in the diagram and the

coloums are the attributes of the classes. The time ow of thesequence diagrams

shown in the this thesis are always top down.

Figure 2.8: Illustration of the generated code from Umbrello

19

Chapter 2. The Castor Project

Framework for Multithreaded Daemons

This framework was designed as a part of CASTOR II to provide an easily

accessable API for creating and runningCthreads in C++ as well as to simplify

the program code of daemons. A capture of the class diagram isgiven in Figure

2.9. The advantage of this framework is that the developer can concentrate on

his application and the program code is far cleaner. As we explain later, the new

Repack system uses this framework to realize the server part, which run threads in

a thread pool. A thread pool means that a user speci�ed class is instantiated once

and it is started with a given number of threads. The prerequisite is that the class

has to inherit from IThread and that the run method is implemented.

A BaseServercan have several thread pools, each targeted at a speci�c purpose.

There are currently two implementations inheriting fromBaseThreadPool, which

provides functionality for both thread pool classes. Each use a concrete instance of

the IThread class, in which the developer de�nes the behaviour of the thread.

The �rst one is the ListenerThreadPool, which binds to a socket on a de�ned port

and executes the thread method whenever there is an incomingobject. The second

one is the SignalThreadPool, which spawns the thread frequently. This time is

speci�ed when the SignalThreadPool class is instantiated e.g. by a BaseDeamon.

To summerise : Each thread pool has exactly one instance of a concrete IThread

class. Its code can be executed by a given number of threads. This means that the

developer must care about the thread-safeness of this class.

Conversion Services and Converters

Conversion services are a special kind of service that allowconversion of data from/to

a given representation to/from memory (that is to/from a data object in memory)

in C/C++. This can typically be used for streaming (the representation being a

byte stream) or for database storage (the representation being data in the database).

20

Chapter 2. The Castor Project

� � �

�

� � � � � � � � � � � �

	

�

� � �

�

� � �

�

� � � � �

�

� �

� � � �

�

�

� �

� �

� � �

�

� � � � � � � � � � � �

�

�

�

�

� � �

�

� � �

�

!

� �

"

#

$

%

& ' (

)

*

+

,

)

#

$

%

- & . / ,

0

+

-

)

1 , 1 (

*

2

' '

3

4

0

+

-

)

1 , 1 (

5

6

(1 .

7

8

' '

3 9 :

4

0

+

-

)

1 , 1 (

5

6

(1 .

7

8

' '

3 9 :

4

;

0

+

-

)

1 , 1 (

5

6

(1 .

7

8

' '

3 9 :

4

(
<

,

9 :

#

)

6

(1 .

7

=

- -

+

> ,

9 :

� � �

�

� � � � � � � � � � � �

? �

@ �

"

�

� � �

�

!

� �

"

4

A +

> , .

3

5

6

(1 .

7

8

' '

3 9 :

4

A +

> , .

3

5

6

(1 .

7

8

' '

3 9 :

4

;

A
+

> , .

3

5

6

(1 .

7

8

' '

3 9 :

4

+

,

+

)

9 :

4

(
<

,

9 :

4

)

6

(1 .

7

=

- -

+

> ,

9 :

4

B ' $ $

+

)

C

<
,

9 :

4

/
.

+

)

A
+

> , .

3
D

(

5

+

$ 1 '
<

)

9 :

4

B ' $ $

+

)

C

1

3

1 . - 1

9 :

4

> 1

)

E

<

)

1
F

9 :

G

� � �

�

� � �

�

!

� �

"

4

H

. - 1

5

6

(1 .

7

8

' '

3 9 :

4

H

. - 1

5

6

(1 .

7

8

' '

3 9 :

� � �

� �

4

> 1

)

5

6

(1 .

7 9 :

4

;

H

. - 1

5

6

(1 .

7

8

' '

3 9 :

4

- 1

)

I

' (1 > (' < ,

7 9 :

4

- 1

)

J

2

5

6

(1 .

7

-

9 :

4

> 1

)

8

' '

3

K

7 9 :

4

H

. - 1

5

6

(1 .

7

8

' '

3 9 :

4

3

' >

9 :

#

%

)

6

(1 .

7

%

(< ,

9 :

� � �

�

� � � � � � � � � � � �

G

� � �

L

� � M �

4

H

. - 1

N

. 1 $ ' ,

9 :

4

;

H

. - 1

N

. 1 $ ' ,

9 :

4

-

)

. (

)

9 :

#

+

,

+

)

9 :

#

/ .

+

)

=

3 3

5

6

(1 .

7

-

9 :

O

P

(

+

1 ,

7

%

-

+

> , .

3

5

6

(1 .

7

%

(< ,

9 :

� � �

�

� � � � � � � � � � � �

G

� � �

?

� � � � �

O

$

%

P

' (1 > (' < ,

7

*

2

' '

3

O

$

%

- 1 (Q 1 (

J

. $ 1

*

-

)

(

+

, >

4

H

. - 1

A

1 (Q 1 (

9 :

4

;

H

. - 1

A

1 (Q 1 (

9 :

4

-

)

. (

)

9 :

4

& . (- 1

R

' $ $. ,

7

0

+

, 1

9 :

4

.

7 7

5

6

(1 .

7

8

' '

3 9 :

4

> 1

)

5

6

(1 .

7

8

' '

3 9 :

4

- 1 ,

7

J

'

)

+ P +

B .

)

+

' ,

9 :

#

3

' >

9 :

#

- 1

)

I

' (1 > (' < ,

7 9 :

#

+

,

+

)

9 :

#

6

1

3

&

9 :

Figure 2.9: Capture of the framework for multi-threaded daemons class diagram

The typical interface of a conversion service provides two main methods, createRep

and createObj that respectively create the representationof a data object from the

object and creating a data object from its representation. An easy implementation

of these methods is to have a big decision on the di�erent object type and dedicated

code in each case. This is not dynamic. It means that the service implementation

has to be changed for each new object.

Another approach is to use converters. These dedicated objects are able to convert

one type of object from/to a given representation. They are,in some sense, very

similar to services : they are also stateless and they have factories that are listed in

a central list. This list contains a two level entry : representation type and object

type.

The conversion service can now work in the same way that the client works with

services. When a conversion needs to be done it will get the right converter, using

21

Chapter 2. The Castor Project

the central list (and maybe loading the correct library), and will then instantiate

and use it. If a new object type is added to the system, the new converter should

be put in a library and declared in the con�guration �le. The system will be able

to use it without recompilation and without relinking. If th e con�guration is read

from a �le at run time it can use it without the need for restarting [?] [35].

2.3 Architecture

Since we now have a general overview of what CASTOR II is intended for, and

how it is used in production, it is necessary to take a closer look at its architecture.

We do not intend to present all the details, since this is outside the scope of this

thesis. However, highlighting the details of some components is recommended for

understanding the following chapters.

The pluggable framework mentioned in Section 2.1 is explained by introducing the

relevant components of CASTOR II. The interactions of thoseare explained on the

basis of a workow of a typical user put and get request.

CASTOR II is driven by a database-centric architecture with independent dis-

tributed components. Most are stateless and the code is interfaced with Oracle

or MySQL relational database management systems [DBMS]. The structure allows

the use of other relational DBMS if necessary (currently Oracle Enterprise Edition

10 is used). Of course this indicates that in terms of availability they rely on the

performance of this DBMS.

The components can be restarted and parallelised easily to provide scaleable perfor-

mance for CASTOR II. Since theStager Logicuses this database it is also mentioned

in the following as theStager Catalogue. The simpli�ed schema of this database can

be found in Appendix C.1.

In terms of software projects already discussed, CASTOR II was designed using UML

diagrams, created with the Umbrello UML Designer. The Umbrello Code Generator

was used to create the database schema.

22

Chapter 2. The Castor Project

2.3.1 The Components

Figure 2.10 shows that CASTOR II consists of many daemons "surrounding" the

central database. The two pink rectangles indicate which components have to be

installed on the same host.

Figure 2.10: The overview of the CASTOR II architecture

Request Handler The RequestHandler [RH] is the interface between the Stager

Logic and the client, as well as for requests coming from CASTOR II components

(e.g. the GcDaemon). It veri�es the sent object and stores itin the database to be

handled by the Stager Logic. The role of the RequestHandler is also to insulate the

rest of the system from high requests bursts.

23

Chapter 2. The Castor Project

RMMaster and RMNode The RMMaster gathers monitoring information from

the RMNodes running on diskservers. This is used for load balancing the migration

and recall process of �les.

GcDaemon The GcDaemon is the 'cleaner' of CASTOR II. It deletes the �les

from the diskserver whenever no space is left or a �le become too 'old'. The decision

which �les are to be deleted, and when, is taken by the Expert System.

Expert System The intention of the Expert System (Expertd) is to externalize

decisions based on policies. It receives requests from other components (Stager,

MigHunter, GcDaemon) and executes user-de�ned scripts. The advantage is, that

policies in scripts (Perl, Posix) can be changed on-the-y and no recompilation of

the a�ected parts is necessary.

MigHunter The Mighunter frequently queries the Stager Catalogue for �les to be

written to tape. If candidates are found, the Expertd is contacted to ask for special

handling and to subsequently attach them to Streams. Streams are assigned to one

tape request. The Migrator, for example, takes all candidates in a Stream to copy

the �les to the assigned tape.

RTCPClientD The RTCPClientD is the master daemon controlling the tape

migration/recall process. Whenever �les are marked in the Stager Catalogue to be

recalled or migrated it executes either the migrator or recaller.

Migrator/Recaller These two multithreaded components are executed by the

RTCPClientd to either retrieve �les from tape or to write them to tape. In detail,

they announce the RTCPD to transfer the �les from/to the disk server to/from the

tape via RFIO protocol. The disk server itself runs a RFIODaemon, which accepts

the connection.

24

Chapter 2. The Castor Project

Tape Daemon The Tape Daemon runs unattended on a tape server and is re-

sponsible for the communication between tape server and tape library. It uses the

tape library speci�c drivers to send commands to the assigned tape drive. It sup-

ports DLT/SDLT, LTO, IBM 3590, IBM3592,STK 9840, STK9940A/ B tape drives

and ADIC Scalar, IBM 3494, IBM 3584, Odetics, Sony DMS24, STKPowderhorn,

STK SL8500 tape libraries as well as all generic SCSI driver compatible robotics

[20].

The Scheduler The Scheduler determines the best candidate resource (�le sys-

tem) for a job. Its decision depends on the load of disk servers (see RMMaster and

RMNode).

2.3.2 The Central Services

The NameServer

The NameServer is one central services component that provides the CASTOR

namespace. This appears as a normal UNIX �lesystem directory hierarchy. It as-

signs a unique 64 bit �le identi�er to all name space elements(�les and directories).

If a �le has been written to tape, the tape-related data is added into the database.

The CASTOR II Recaller uses this information if a �le has to be copied from tape

to disk again. Files in CASTOR are classi�ed byFileClasses. They determine how

many copies of the �le are going to be created on tape. The intention is to create

di�erent backups of this �le. For example, the FileClass of ATLAS and CMS �les

allows two copies on tape (in the following also mentioned astapecopy).

In the era of CASTOR I, �les were allowed to be splitted over more than one tape

to use the full tape space for storage. The result is that a �lecan consists of 1..n

segments. Segments are the internal representation of those parts ofa �le in the

NameServer and Stager database. This policy has changed in CASTOR II and �les

are now written completely to one tape.

25

Chapter 2. The Castor Project

The VDQM

The VDQM (Volume Drive Queue Manager) provides a FIFO queue for accessing

the tape drives. Requests for already mounted volumes are given priority in order

to reduce the number of physical tape mounts [21].

The VMGR

The VMGR (Volume Manager) keeps information about all tapesin CASTOR II

(e.g. free space, capacity, library, etc.). It also enablesto group tapes for given

activities. It is, for example, useful to have di�erenttape poolsfor the experiments.

They are independent from the library and tapes can be removed/added to tape

pools easily. This tape pool information is used during the migration of �les.

The CUPV

The CUPV (Castor User Privileges) provides rights to users and administrators

for tape related operations e.g. reading a �le from a tape. Itmanages a role based

authorisation mechanism, and is queried by the NameServer or VMGR, if they need

to process an access request.

2.3.3 The Stager Logic

The Stager Logic interfaces with the central services to enable put/get �le requests
by users. In this case, he has to specify aServiceClasswith the request. The Ser-
viceClass has to be de�ned in the Stager Catalogue by the CASTOR operator and
keeps the following information for recall/migration process:

� disk and tape pools for recall/migration

� the number of tape drives used for migration

� policy for tape migration

� policy for recall

26

Chapter 2. The Castor Project

� policy for garbage collection

In combination with the FileClass from the NameServer 2.3.2, which is also kept in

the Stager database, the migration can be tuned very e�ectively. Two use cases are

listed below to explain how the combination of both archive this.

Selective Migration Based on Filesize

A ServiceClass, userSvc, is con�gured with two tape pools: fastAccess and largeCa-

pacity. The former contains with relatively low capacity but with fast mount/load/-

position (e.g. STK 9840 media). The largeCapacity tape poolcontains high capacity

media with relatively slow mount/load/positioning time (e.g. STK 9940 media). The

use-case to be addressed is the following: it is desirable tobe able to selectively con-

struct the migration streams so that small �les, say �le-size < 100 MB, should be

migrated to the fastAccess pool while large �les should go tothe largeCapacity pool.

Migration of Dual Tape Copies to Di�erent Tape Pools

A ServiceClass, rawDataSvc, is con�gured with two tape pools: copy1 and copy2.

The �les written to rawDataSvc all belong to the FileClass dualCopy, which is

designed with two tape copies. The default behaviour of the MigHunter program is

to assign both copies to all available Streams. The desired behaviour is to selectively

write �les with copyNb = 1 to tape pool copy1 and the �les with copyNb = 2 to

copy2.

2.3.4 The Recall of Files

The components for a get request (recall) are explained in the following steps.

1. The client sends its request to the RequestHandler, whichstores it in the DB

2. The Stager polls the DB to get the request and checks for �leavailability in

disk cache

27

Chapter 2. The Castor Project

3. If the �le is not available it is set to be copied from tape

4. RTCPClientD

� polls the DB to get �les to be copied from tape to disk (recall)

� queries Stager for the target �lesystem

� gets location of �le on tape from the NameServer and submits arequest

to the VDQM

� executes the recaller

5. VDQM reserves a tape drive and tape server for the tape request

6. If the tape drive is ready, the RTCPD transfers the data to the selected �lesys-

tem

7. Stager polls the DB to check for �le availability (2)

8. The �le is available; Stager launches a StagerJob throughthe scheduler

9. The StagerJob triggers the RFIODaemon and informs the client as to which

disk server and port to contact.

10. The Data is transfered to the client

11. The Stager Catalogue is updated and cleaned up

2.3.5 The Migration of Files

The collaboration of components for a put request (migration):

1. The client sends its request to RequestHandler, which stores it in the DB

2. The Stager polls the DB to get the request and launches the StagerJob through

the scheduler

3. The StagerJob answers to the client through the RequestReplier, giving to it

the machine and port with which to contact the RFIODaemon.

28

Chapter 2. The Castor Project

4. The data is transfered from the client to a disk server

5. The MigHunter attaches the �le to a stream

6. The RTCPClientD will launch a Migrator

7. Migrator

� Queries a tape from the VMGR, depending on the tape pool information

in the ServiceClass the �le was staged in

� Submits it to the VDQM

� Asks the DB for the next migration candidate in the stream (based on

�lesystems availability) and writes it to the assigned tape.

� The NameServer is updated with the location on tape returnedby the

tape server

8. The Stager Catalogue is updated

Data Veri�cation

An important aspect for transporting data is the validation of it to provide correct

transmission. There is no problem if the data stays on one media, but as soon as it

is moved between two instances (e.g. tape and disk) there is achance that an error

occurs during the transmission via network. Corrupted datahas an enormous e�ect

on the later analysis of the experiments and leads to wrong results.

To ensure a safe transportation the RFIO protocol checks thereceived data with

the Adler-32 checksum algorithm, which was invented by MarkAdler. It is almost

as reliable as a 32-bit cyclic redundancy check (CRC-32) [22] for protecting against

accidental modi�cation of data, such as distortions occurring during a transfer, but is

signi�cantly faster to calculate in software. Its speci�cation and detailed description

of the algorithm can be found in RFC 1950 [23]. This Adler checksum is stored with

the �le segment information in the NameServer database and used to validate the

data after every transfer. In case the calculated Adler fromthe received data di�ers

29

Chapter 2. The Castor Project

from the original one an error is written to DLF and the transfer is tried again up

to three times (Stager default value).

30

Chapter 3

What is Repack?

This Chapter gives a general introduction to the topic of Repack; What it is, why it

is used and why it is important. An explanation of Repack is given and the reasons

for it are listed. A detailed understanding of tapes is indispensable and therefore

presented.

Repack is a synonym for a copy process, which copies all of a ta pe's

data onto temporary disk storage and then rewrite it onto ano ther tape.

From Chapter 2 we know that CERN uses CASTOR to store huge amount of data

permanently from the experiments on magnetic tapes.Tape operatorsare responsible

for maintaining these tapes and the tape libraries. If an operator has reason to

suspect that a particular cartridge is giving problems, it is possible to remove it

from use by moving all the data to other tapes using the Repackutility. These

problems and further issues are listed below and explained in detail in Section 3.2:

� To prevent data losses, because of reaching the tape's mechanical lifecycle

� To stack data on high-density tapes to reduce the number of tapes to store

and manage

� To move data to more durable tape media

31

Chapter 3. What is Repack?

� To release tapes for reuse

� To optimise space usage of tapes

To understand why those problems appear and how they are solved, we have to take

a closer look at the technology and implementation of tapes.

3.1 Introduction to Tapes

A magnetic tape is a non-volatile storage medium consistingof a magnetic coating

on a thin plastic strip. Nearly all recording tape is of this type, whether used for

video, audio storage or general purpose digital data storage using a computer.

3.1.1 History

The Magnetic tape was �rst used to record computer data in 1951 on the Eckert-

Mauchly UNIVAC I [24] . The recording medium was a a strip of 1/2" (12.7 mm)

wide thin metal, consisting of nickel-plated bronze. The recording density was 128

characters per inch (198 micrometre/character) on eight tracks at a linear speed

of 100 in/s (2.54 m/s), yielding a data rate of 12,800 characters per second. Of the

eight tracks, seven were data and one was a clock, or timing track. Making allowance

for the empty space between tape blocks, the actual transferrate was around 7,200

[25] characters per second. E�ective recording density increased over time and a

multitude of tape formats have been developed and used.

3.1.2 Current Use

Today, most modern magnetic tape systems use reels that are much smaller and are

�xed inside a cartridge to protect the tape and facilitate handling. Modern cartridge

formats include Quarter Inch Cartridge [QIC], Digital Linear Tape [DLT] and Linear

Tape Open [LTO]. A tape drive uses precisely-controlled motors to wind the tape

32

Chapter 3. What is Repack?

from one reel to the other, passing a read/write head over thetape. The latest

generation used at CERN are theLTO-3, IBM 3592 J1A and T10000 tapes. LTO

is a computer storage magnetic tape format developed and initiated by Certance,

Hewlett-Packard and IBM as an open alternative to the proprietary DLT. LTO

originally came in two variants Accelis and Ultrium:

� Ultrium, the high capacity variant

� Accelis, the high speed variant

However, the performance of the Accelis tapes never exceeded that of the Ultrium

tape format so there was never a demand for Accelis1. LTO-3 is the third genera-

tion of this standard and is currently the latest. But the consortium announced a

roadmap for the LTO development with the goal to achieve 6.4GB of capacity and

540MB/s reading speed for the sixth generation in 2010 [26] [27].

The T10000 tapes and drives were developed by StorageTek, now Sun Microsystems,

and o�er even higher performance for read/write actions than the LTO-3 tapes.

The IBM 3592 solution is comparable to the T10000 from STK, but o�ers higher

mechanical durability.

Table 3.1 shows tapes and tape drives with some of their technical speci�cation,

which are currently used for storage at CERN.

Model Capacity

(uncompressed)

Average �le

access time

Data transferrate

(uncompressed)

Load/Unload

cycles

T9940B 200 GB 41 sec 30 Mb/sec 10,000

LTO-3 400 GB 72 sec 80 Mb/sec 5,000

3592 J1A 500 GB 60 sec 120 Mb/sec 20,000

T10000 500 GB 62 sec 50-120 Mb/sec 10,000

Table 3.1: Overview about the most common tape drive models ([26], [28], [29], [30])

1LTO came to mean the same as Ultrium

33

Chapter 3. What is Repack?

3.1.3 Organisation of Tapes

The following is an example of the LTO-3 tape recording technique commonly used

by tapes at CERN. The only di�erence is the length of track, the amount of tracks

and the data density of the volumes.

The Ultrium 3 format records 704 tracks across the half-inchof tape width. This

linear recording format has a serpentine characteristic. The drive mechanism makes

multiple passes from the beginning of the tape [BOT] to the end of the tape [EOT]

and back to read or write the full capacity of the cartridge. Figure 3.1 illustrates how

the Ultrium 3 format splits the 704 tracks into four bands of 176 tracks each. Data

is written to the innermost bands �rst, to provide protection to the data recorded

earliest in the process, by writing it in the centre, the mostphysically stable area on

the tape. Data is also veri�ed as it is written, because the read head follows the write

head. On pass one of a round trip down the length of the tape andback, 16 tracks

are read, or written, concurrently. At the end of the tape, pass two of the round trip

starts. The read/write heads are indexed and positioned over 16 new tracks, and the

tape reverses direction back toward the beginning of the tape to complete the round

trip. For the next round trip, the heads are again indexed to anew position over

a new group of 16 tracks. Figure 3.1 illustrates only 8 read/write components for

the drive head. The servo bands guarantee this positioning of the head and ensures

that it follows a straight line on the data band. The guard bands stabilises the tape

band. The arrows indicate the movement direction of the head.

Table 3.2 shows various tape drives and their need for a full-length pass. Fewer

passes equals less media wear. The T10000 tape drives use a dual head technology,

by physically separating the dual heads down the length of the tape by more than

an inch. Using the 32 channels for read/write simultaneously causes less tape wear

compared to the LTO technology. Still, they are ten times as expensive (37.000 USD)

as a 'normal' LTO3 drives (a IBM LTO3 SCSI-2 drive costs around 4.000 USD)2.

2Market prices from July 2006

34

Chapter 3. What is Repack?

Data Band 3

Data Band 1

Data Band 0

Data Band 2

Guard
Bands

prewritten
Servo Bands

Full Tape
Width

Read/Write Head Read/Write Head

BOT EOT

Head Movement

Figure 3.1: Illustration of reading / writing data to tape.

Drive Tracks Channels Full-length passes

T9940B 576 16 36

T9840C 288 16 18

T10000 768 32 24

LTO3 704 16 44

IBM 3592 512 8 64

Table 3.2: Track, channel, and pass requirements for various tape drives.

35

Chapter 3. What is Repack?

3.1.4 Organisation of Files on Tapes

In general, data on tape is organised bylabels. A label is a small area on tape where

information about the data is stored (e.g. checksum). Assuming that these are �les

(or in CASTOR, segments of �les), labels mark their beginning. To �nd a �le on

tape the �le sequence number[FSEQ] (the label number), is given to the tape drive.

This then seeks over the labels until it �nds the correct one and then reads the data.

In case of writing, the tape drive seeks to the last label (last FSEQ number) and

appends the new data (see Figure 3.2).

Tape drives currently allow two ways of accessing data on tape, by FSEQ or byuser

blockid. Both are reported when the data was written and stored in theNameServer.

Modern tape drives, like the STK 9940, optimise this seek process if the user blockid

is given. They translate it to the physical location on tape and determines the

quickest method to read the data block. If the block is some physical distance from

the current location, a calculation will result in a high-speed head move to the block

location, which is followed by a low speed data reading. Thisuser block id is used

later in the Section 8.3.

1 2 3 4 5 6

BOT EOT

File Sequence
Number

new data

7

Tape Labels

Data Blocks (Files,Segments)

Figure 3.2: The �le sequence number for new data

36

Chapter 3. What is Repack?

3.2 The Reasons in Detail

Mechanical Durability

The magnetic tape inside the cartridge is made of highly durable materials. However,

the tape wears out after repeated cycles (winding/rewinding). Eventually, such wear

can cause an increase in tape errors. Modern tape drives detect errors during a read

or write process and avoids them next time. Thanks to a very e�cient and secure

way of writing, the data can still be read. But the increase ofreported errors from

the drive is an indicator that the end of the tape's is reachedand the data has

to be removed to ensure data integrity. These errors are logged by the tape part of

CASTOR II and whenever the tape errors reach a certain threshold, an email is sent

to the tape operators. In most cases, the data then has to be repacked to another

tape to avoid total data loss or, at least expensive data recoverage (e.g. by specialist

companies).

Not only the read/write errors are logged. The VMGR also stores, next to the

administrative information (eg. tape library, vendor), for all tapes statistical data:

� amount of read mounts

� amount of write mounts

� last tape drive it was mounted in

� the containing number of �les

� free space and capacity

This allows the operators to track and monitor the cartridgeperformance and en-

ables predictive failure analysis and enhancing data integrity. CASTOR tape oper-

ators, based on either reported errors on a tape or on the number of total mounts,

if a tape has to be repacked.

37

Chapter 3. What is Repack?

Stack Data on high-density / more durable Tapes

We move data from one type of tape to another for several reasons and advantages:

In case of repacking low density tapes to fewer high density tapes, less mounts and

drives usage are needed to access the �les in future. An example:

Repack shifts 480GB of data from eight T9940A tapes to one T10000 tape. Only one

tape has to be mounted to access the same number of �les in future. Experience from

the last few years shows that the experiments retrieve theirdata for analysis by a

list of �les (one mount, many reads), not �le by �le (each readrequires one mount).

Therefore we achieve less tape drive usage, which results ingreater availability for

other read/write requests. So, for the same throughput to tape during a running

experiment, fewer tape drives are needed. This results in lower costs.

In fact, since CERN wants to get rid of the old StorageTek Powderhorn silos to

make room for more IT equipment, the remaining tapes have to be repacked to the

new tapes.

Another advantage for repacking to other types of tape is that we move data to

more durable tapes. In case users need data from one tape veryoften (measured by

the mounts in a certain period of time) it is preferred to moveit to more durable

tapes, like the IBM 3592s. Their higher number of possible mounts (see Table 3.2)

decreases the chance of data errors compared to another tapetypes, e.g. LTO-3.

In the opposite, moving less used data from a IBM 3592 tape to amore adequate

LTO-3 tape, optimises the usage of tapes in terms of �le usage.

Optimisation of Tape Space Usage

Another reason for repacking is to avoid data loss due to invalid marked segments

(see Section 2.3.2) on a tape. Segments become invalid whenever a userdeletes

or modi�es a �le in CASTOR II. In fact, the location entry of that �le is de leted

from the NameServer database, but they cannot be physicallyremoved, since this

is a character of data organisation on tapes (see Section 3.1.4. This media type is

written incrementally (like writeable Compact Disks [CD]), which means that new

�les are always written to end of the last �le. In consequencethe invalid data cannot

38

Chapter 3. What is Repack?

be overwritten and the tape space is lost.

To reclaim this space, the valid segments have to be copied toanother tape and

the old tape completely erased. The tape operator then can decide to use this tape

again. This 'recycling' results in lower media costs per year, because for the same

data space requirement less new tapes have to be bought.

Figure 3.3 illustrates the e�ect of this tape space optimisation.

BOT EOT

free Space

Repack

deleted Segments

valid Segments

free Space

BOT EOT

Tape 1

Tape 2

1

1

3 5

3 5

2 4

Figure 3.3: Illustration of the optimisation e�ect of repack on tapes

39

Chapter 3. What is Repack?

40

Chapter 4

The old Repack

The focus of this chapter lies on the functionality of the current Repack system

(refered to as Repack I). The architecture is introduced andthe functionality briey

outlined.

4.1 Introduction

Repack I was developed in 2001 as a part of CASTOR I to archive the goals listed

in Chapter 3. As such, it uses the old Stager API to copy segments from tape to

disk and back to another tape. Hence, it needs a CASTOR I instance. It is able to

migrate data between di�erent types of tape, as well as optimise tape space usage.

Repack I is used since 2001 and because CASTOR II was deployed, an dedicated

CASTOR I instance currently runs to provide repack functionality.

After Repack has been introduced and in production for several months it turned

out that it did not work correctly and about 30,000 �les were lost due to wrong

segment information handling. The �les were rescued duringa recovering process

with log information, which took more than 2 months.

The VMGR and NameServer are the same as in CASTOR II. Only the Stager is

from CASTOR I.

41

Chapter 4. The old Repack

4.2 Architecture

The Repack I application is tailed to CASTOR I and like many other modules

written in C. It uses a Stager command to copy �les from tape todisk cache as well

as VMGR function calls to mount or unmount tapes for migration. It is available in

the CASTOR I software package as one executable, which dealswith the full repack

process.

The sequence diagram in Figure 4.1 shows the workow of Repack I. First the

�les are recalled in sets by triggering the Stager. The number of segments in this

set is determined by the Stager con�guration and inuences heavily the number of

mount/unmount commands Repack sends. The reason for this can be seen in the

next steps. If the �rst set of segments is recalled, Repack mounts a tape through the

VMGR and locks it for writing. As soon as this is done, it triggers a RFIO command

to copy the segments from disk cache onto the mounted tape andadjacent updates

the VMGR. The free space of the new tape is decreased and the NameServer is

informed about the new location of the processed segments. When this is done, the

next set of segments are handled.

If the con�guration allows only a small set of �les, more mount/unmount operations

are required.

42

Chapter 4. The old Repack

S

T U V W X

Y

S

Z [\]

S

^ W _ U ` U T

a

U T

S

b

c

W d U T

e

W `

c

f T

g

S

d U

c

` U d _ U ^

c

`

h

T f _

c

W V U

S

`

c

W d U ` U

c

f

h

` U d _ U ^

c

`

S

i

f f V f

a

U T ` U

c

f

h

` U d _ U ^

c

`

S

_ f

j

^

c

k

W V U

S

l

T

m

c

U

b

U d _ U ^

c

`

c

f

k

W V U

S

j

V

n

W

c

U ^ U

l

k

W V U

m

^

h

f T _ W

c

m

f ^

S

j

V

n

W

c

U

h m i

U

m

^

h

f T _ W

c

m

f ^

Figure 4.1: Sequence diagram for Repack I

43

Chapter 4. The old Repack

44

Chapter 5

Analysis and Design for a new

Repack

Now after that we have introduced the Repack I architecture,this Chapter will

outline its limitations and from this the motivation for a new development of Repack

is presented. The main requirements are necessary for the further development and

are elaborated, too.

5.1 Limitation

Looking at the implementation of the current Repack, we discover several problems

and limitations:

1. It is not compatible with the existing CASTOR II architecture. As explained

in Section 4.2 it uses the CASTOR I Stager API, which was reimplemented

and some parts have changed. The necessary functions which Repack I needs

are no longer available. To provide a repackaging of tapes inthe existing

situation, a CASTOR I instance has to be run. This is a unsustainable

situation and has to be changed.

45

Chapter 5. Analysis and Design for a new Repack

2. Secondly, and very signi�cally, Repack I is not able to concatenate �les which

are split over more than one tape. In the era of CASTOR I tape space was

more expensive than nowadays. To limit tape costs the developers decided to

use the full tape space and write the remaining �le data to a new tape. Thus,

one �le can have several segments (see Section 2.3.2). Todaytapes provide

more space for less money and the policy of writing �les to tape has been

changed. It is now recommended to write the �le completely toone tape.

Hence only one tape has to be mounted to read a �le.

Repack I just copies segments from tape to tape and is therefore not able to

ful�ll this new requirement. The result is that the repackaging process is not

optimal and has to be redeveloped.

The time a recall process takes is mainly determinded by the usage of tape

drives and -much more- by the number of segments. For each segment a

tape request has to be submitted to the VDQM and, if a free tapedrive

found, fetched by the handbot of the tape library and loaded in a tape drive.

Mounting only one T9940B tape, takes about 30 seconds (see Table 8.1). In

the case of two segments, the minimal time is already 60 seconds. In both

cases, the waiting time for a tape has not being considering.Adding the

average head positioning time of 45 seconds for both tapes already result in

total in 150 seconds. Still, up to this point no data was read from tape. At

an average reading speed of 26MB/sec for this drive type, andfor a segment

size each of 300MB, another 24 seconds (12 seconds read time each) has to be

added.

To read a �le of 600MB in two segments, i.e. under perfect theoretical

conditions with no delay due to read error and no network transport times,

it takes around 180 seconds to copy a �le from tape to the disk cache. It

takes half this time for the same �le consisting of one segment, which is an

improvement of 100%.

This example shows the great disadvantage of not concatenating the �les at

the time the tape is being repacked.

46

Chapter 5. Analysis and Design for a new Repack

Table 5.1 gives an impression of how many �les are currently a�ected by this

segmentation. The huge amount of �les with two segments underlines the need

for defragmentation. The number of �les with 3 or more segments is very low

compared to the total amount (50 million), but around 30 CASTOR I instances

with the old migration policy are still running and the amount of segmented

�les will increase.

Segments Number of Files

1 47,908,006

2 22.200

3 429

4 19

> 5 1

Table 5.1: Statistic about the about segmented �les from theNameServer (August

2006)

The (very expensive) robotic tape libraries contain highlysophisticated parts

like the robotic arms, which must sustain permanent movements for load-

ing/unloading tapes into the drives 24 hours a day. For the IBM Library, tests

were done with 10,000 mounts per week with 1% failure [33]. Our intention is

clear, fewer mounts would increase the lifetime of these parts and resulting in

less maintenance and down-time. This will also have a bene�cial e�ect on the

running costs.

3. Repack I is not able to recover after it had crashed. This isbecause the

information about the Repack process is kept in memory and lost whenever

the program is exited. Processed �les until this point were repacked correctly

and they don't e�ect performance, if the tape is repacked again. Still, the

data which was stored in the disk cache has to be removed by hand, which

means a time intensive procedure is needed to clean up everything before

restarting the process.

47

Chapter 5. Analysis and Design for a new Repack

4. The tape load/unload operations in Repack I are strongly dependend on the

con�guration of the CASTOR I Stager instance. The lower the number is,

the more operation are required. Considering the load on thetape libraries,

this solution is hardware intensive and not optimal. Especially because the

Repack system knows that more data is to be written, but the tape unloaded,

because the Stager limits the available �les.

5. For each tape the user has to start their own Repack instance on a console1,

which handles the process. The program runs as long as the process is not

�nished and all segments repacked (up to eight hours).

We conclude the limitations for the current Repack implemention:

� Mismatch of the old Repack to the new CASTOR II architecture.

� No Defragmentation of �les

� Di�cult to handle after crashes

� C Code

� Di�cult handling of concurrent repack processes

� Cleanup on diskcache

� Bad migration functionality

1Unix text entry and display device for the system

48

Chapter 5. Analysis and Design for a new Repack

5.2 Requirements

The requirements are a result of the existing limitations and give us the basic

framework what the new Repack application should provide. But there are also

more aspects. Like other CASTOR II components the DLF (see Section 2.2.3)

is recommended to be used for storing and accessing log messages through a

comfortable web interface. This gives the Repack user a simple way to get detailed

internal information about the Repack system.

The program code needs to be changed to an object orientated language to make

the code easier to maintain. From the general CASTOR II architectural point of

view, it is recommended for non-time critical applications(like Repack is) to be

written in C++ and to use existing C++ modules and frameworks.

Another important aspect is the defragmentation of �les. Whenever a segment on

a tape is repacked, the corresponding �le has to be recalled with all its segments,

merged and written to a new tapes. As mentioned before (see Section 5.1, this is

required in CASTOR II for faster �le access and reduces the load/unload operations

for tapes. By this the longevity of tapes is increased.

System and program crashes should not inuence the progressof repacking tapes.

It is allowed to be interrupted or paused, but not disturbed in the sense of losing

all information about the progress.

It is very useful for the user to see the progress of repackaging. This can be used to

estimate the remaining time for a tape to repack.

We conclude the following requirements:

� Usage of the CASTOR II Stager API and no direct tape operations

� Able to consolidate a �le that spans multiple tapes onto one tape (Defragmen-

tation)

� Scalability for handling jobs

� Changement of C code to easier maintainable C++ code.

49

Chapter 5. Analysis and Design for a new Repack

� Robust against unexpected program crashes

� Usage of the DLF

� Monitoring of the process

� Tape drive usage minimal

50

Chapter 6

Alternative Solutions

The last Chapter showed that a new solution for the Repack utility in CASTOR

needs to be found. In this Chapter we look at existing products, which may be

applicable.

A '+' indicated a positive aspect, '-' a negative.

6.1 IBM Tivoli Tape Optimizer on z/OS

The IBM "Tivoli Tape Optimizer" product copies information from one or more

tape volumes to other tapes in a single copy request. It can beused with any source

or target media that is capable of storing physical or logical tape volumes. In detail,

it allows all types of tape media and tape devices that are compatible with IBM

systems [32].

+ support is provided

+ veri�es written data

- works only with IBM Tape Libraries

- needs a running IBM Tivoli Storage Manager

51

Chapter 6. Alternative Solutions

- tapes must be Tivoli managed

- runs only on z/OS

- additional e�ort would be needed to update CASTOR NameServer information

- no possibility to concatenate �les (see Section 5.1)

6.2 Novastor TapeCopy

The Novastor TapeCopy gives the ability to copy existing tape data from one tape

to another, independent from the tape format (LTO, 9940,etc.). It performs an exact

bit for bit copy of a tape to another tape or to a disk. The output can be any SCSI/

EIDE tape device or a multi-tape library [31].

+ works with any SCSI or EIDE tape drive

+ copies simultaneously from one source to one or many destinations.

+ veri�es written data

+ functions with one tape drive only

- only for Microsoft Operating Systems

- additional e�ort would be needed to update CASTOR NameServer information

- no possibility to concatenate �les (see Section 5.1)

6.3 Result

From our research for this topic, we discovered that there isvery little information

about, or solutions to, our speci�c scenario. However, looking at them is necessary

for completeness.

All the systems presented create an exact copy of the original tape, to ensure data

52

Chapter 6. Alternative Solutions

integrity and make tape format changes available (see Section 3.2). Still, they only

cover a few of the requirements presented in Section 5.2. Concatenating �les is a

CASTOR speci�c problem and not implemented by them. Nevertheless, this is a

major issue and has to be ful�lled.

Furthermore the usage of DLF comes into question as it is not implemented by third

party software.

6.4 Conclusion

The result shows that the existing commercial solutions arenot satisfactory for the

current and future needs of CASTOR Repack. The problem is CASTOR speci�c

and a new development project is inescapable.

53

Chapter 6. Alternative Solutions

54

Chapter 7

The new Repack

In this chapter we describe the top-down development of the new Repack system

(refered to asRepack II). First we de�ne the use cases and from these the require-

ments for the application are determined (Section 7.2). Based on this information, a

detailed view on the software framework is needed to subsequently create the high

and low level designs. The workow de�ned in Section 7.5 gives a guideline for the

necessary development steps.

7.1 Use Cases

The development of a new application requires the examination of the use cases.

These use cases are shown in a UML diagram. The description de�nes the possibil-

ities the user can control the new Repack system (see Figure 7.1).

The use cases are:

Get Help The user has to get information about the control of Repack II. The

list of available commands line arguments for this are shownto him on the console.

Start new repack process The user starts a repack for a tape. This requires

that a least one tape has to be given as a parameter. The targettape pool where

55

Chapter 7. The new Repack

o

p q r

s

t

u r

t

v q w r q x u y

z

{

q | } ~ q r • v v

€

v • r q x u y

z

{

q

t

r

€

q ~

€

v •

€

v

‚

} r | u

t

€

} v u

ƒ

} •

t

u r q x u y

z

„

q

t

…

q

†

x

{

q

t

r

€

q ~

€

v •

€

v

‚

} r | u

t

€

} v u

ƒ

} •

t

u

† †

r q x u y

z

p

‡

r y

… €

~ q r q x u y

z

q

ˆ

t

u x q p

{

q x u y

z

s

‰ p

t

q |

Figure 7.1: Use case diagram for Repack client

the �les should be written to, can be speci�ed. The given tapemust not be in the

Repack system as a current running process (no double repacking). The speci�ed

tapes given as parameters can be in the same or di�erent tape pools. The system

responds with an answer. The tape status must be marked as FULL in the VMGR.

Remove Repack process Removes a tape from the Repack system and aborts

the repack for this tape. It is not checked whether the tape has been fully repacked

or not. The tape must not be in an archived state. The user can specify more than

one tape for removal. No answer is sent by the system.

Retrieving information about all Repack processes The user should be able

to get an overview of the active (running) Repack processes with their statistics. If

an archived process is queried, the system responds with an error.

56

Chapter 7. The new Repack

Retrieving information about one Repack process The user should be able

to get the statistics and details for one speci�c Repack process.

Archive �nished tapes The user should have the possibility to archive repacked

tapes. For each candidate (�nished, repacked tapes), we getan answer from the

system. An archived tape is not active, and therefore, available for repack again.

This allows the system to keep track of the history of the repacked tapes. If

archived, it is not shown anymore in the status list.

In case of an error in the system when the user submits commands, a message is

shown with a detailed description. If DLF logging is enabled, and con�gured for

Repack II, more messages can be seen there depending on the logging level.

If we take a closer look at the second use case, we see that the tapes to be repacked

can be freely chosen from in di�erent numbers from di�erent tape pools. Table 7.1

shows the resulting possiblities.

1..n Tapes From To

1 TP 1 TP

1 TP n TPs

n TPs 1 TP

n TPs m TPs

Table 7.1: The possibilities to repack a tape (TP=Tape Pool)

57

Chapter 7. The new Repack

7.2 Requirements

The requirements result from the presented use cases in Section 7.1 and from the

analysis and design Section 5.2. Additionally the operating system used at CERN,

SLC is listed to ensure maximum compatibility for CASTOR II.The requirements

are:

� the defragmentation of �les

� a scaleable architecture to satisfy the need for multi-userrequest processing

� to provide a user interface, which o�ers command for input and monitoring

for the user.

� monitoring information about the running process

� Robust against program crashes. After a restart, the process should continue

without user intervention (stateless)

� to be easily maintainable and extendable

� the usage the DLF logging facility

� to runs on SLC-3 / SLC-4

� to guaranteed correct data transportation

� exibility in repacking source tapes to targets (di�erent media types).

58

Chapter 7. The new Repack

7.3 The De�nition of a Repack Process

For the following we de�ne three main steps for a full Repack process of a tape :

1. Read the valid tape segments

2. Copy the corresponding �les to disk

3. Write �les to a new tape.

7.4 Architecture

This chapter deals with the view of the functionality of Repack and its interaction

with other components of CASTOR II. We are introduced to the high level design

which highlight the overall functionality of the Repack II system. This prepares

the reader for the low level design, which helps de�ne out thedetails of the new

application.

7.4.1 Software Framework

The new Repack is based on aModel-View-Controller [MVC] concept. This

represents the idea of separating an application's data model, user interface and

control logic. The Model represents the business data objects and should be cleanly

separated from the Controller and the View - it should not need to know anything

about them. In this application, the Model is typically implemented as simple

classes that provide getters and setters for several of attributes. They do not

contain any logic, but are exclusively used to transport data between the backend

system and the frontend. As we see later on, the Model is designed using UML with

Umbrello (see Section 2.2.3).

59

Chapter 7. The new Repack

The Controller, which takes care of the business logic, responds to events, typically

user actions, and invokes changes on the Model.

The last component is the View. Its responsibility is to be aninterface to the user.

It provides control mechanisms for the backend and presentsinformation to the user.

This architecture is commonly used in modern software development, because

it gives the advantage of modifying one component with minimal impact to the

others. Here, it is applied through aclient-server model. The View is represented

by the client, the Controller by the server. Hence, we achieve a certain portability,

because the client can run on a di�erent machine to the server. They communicate

via the network using a stream representation of the Model.

Usage of existing funtionality

Repack II bene�ts from the fact that the basic functionality already exists and is

available in the CASTOR II framework. The Stager API for example, provides an

interface to recall and migrate �les. The new Repack application uses this and is

therefore does not deal with low level implementation like tape operation. The main

reason for this is to avoid code redundancy. It is a bad policyto rewrite functionality

from a software design point of view instead of reusing it. The robustness su�ers in

terms of having to maintain the same code twice and it makes Repack depend on

more low level components.

Having the migration policies in mind, a powerful instrument for the migration to

tape is available. One example is the tape handling for �les depending on their size

to optimise the reading of them (see Section 2.3.3).

Another advantage is the independence of hardware like diskservers or tape servers.

As it was decided that it is not a function of Repack to deal with the low level

implementation (eg. �lesystem or tape layer), we can focus the development on the

60

Chapter 7. The new Repack

usability, stability and new features. From the high level point of view, the server

itself implements theDelegate pattern[34] by sending the real task (getting the �les

from tape) to a CASTOR II instance.

Performance

For performance reasons, the generic framework for multi-threaded daemons is used.

The Repack server is able to run in the background as an unattended application.

By multi-threading the request handling process it satis�es the demand of being

highly available. This means that if two users submit a request to the server, two

threads will be started to handle the command. The number of concurrent threads

has to be speci�ed during compilation time.

Statelessness

Since the application is to be stateless, the logic part doesnot keep any data in

the memory. The repack process information is stored permanently and reliably in

a relational database. This prevents data loss during a program crash (e.g. CPU

failure, harddisk failure). The actual DBMS which is used atCERN is Oracle

Enterprise Edition database version 10. The structure of the tables corresponds to

the Model we use to represent our business objects.

If we want to achieve statelessness for the application, it is necessary to separate

the repack process in into logically independent steps, each represented by a state.

If the process fails between two states, it falls back to the previous one and stays

there until it is set successfully to the next one. As we see later on, we get to know

to the di�erent states and the assigned responsible modulesin the Repack server.

This stateless architecture is commonly used in high availability systems in industry.

Instead of trying to do as many process steps as possible at once, the idea is to do

little steps where, in each phase, few actions are safely executed.

61

Chapter 7. The new Repack

Modi�cations in CASTOR II modules

There are several changes to do in the existing CASTOR II modules. We are able to

stage �les, but not directly to migrate �les since this is decided by the Stager (more

precise: by the Stager policy). As we see later in Section 7.7.1 these modi�cations

a�ect the Migrator, the NameServer and the Stager catalogue.

7.5 High Level Design

The high level design gives us an overview of the workow of the application

including the interaction with the CASTOR II parts (see Figure 7.3). This is one of

most important steps during development, because during this phase a lot of issues

have to be considered in order to have fewer problems in deployment.

To get an idea what the basic action of the Repack II includes (repack a tape),

we make up the necessary steps according to the existing possibilities. Figure 7.2

shows the activity diagram of a repack process. The boxes indicate the two main

phases of it.

1. The Repack system must be informed that a tape has to be repacked. The

user (tape operator) uses the Repack client to send a requestcontaining the

tape volume id to the Repack server. This implies that the tape operator

decides and determines which tape to be repacked.

2. The server checks if the speci�ed tape in the request is valid for a repack

(must be in marked as full in VMGR).

3. As we already know, the tape consists of segments of data which can be

in a valid and invalid state. (see Section 2.3.2). The serverretrieves the

62

Chapter 7. The new Repack

Š

‹ Œ •

Ž Ž

•

‹

•

‘

‹

•

’ ‹ “

•

”

•

‹

•

•

– Ž

‹ ”

—

•

•

˜

“ • ’ ‹ ”

”

•

•

•

‹

•

– Ž

‹ ”

™

–

•

š •

•

–

› “

Œ

˜

• “

•

‹

‘

•

•

•

œ
” ›

• • – Ž

‹

’

–

•

š •

•

‹

œ
ž

Ÿ

•

•

‹

• ’ ‹ ” ‹ š
¡

‹ š

•

‹

•

Š

‹ ¢ œ ‹ ”

•

Œ

˜

‹ Œ

£

•

• ž ‹

Figure 7.2: The activity diagram

valid segments from the NameServer and thereby also its corresponding �le

pathname in CASTOR II.

4. Since the Stager provides an API for copying �les from tapeto disk we use

this mechanism for sending a request to the Stager, containing the �les names

for this tape from the previous step. In detail, we send a request for each �le,

but the Stager is smart enough to process multiple concurrent requests for

one tape together. In principle, the problem is reduced fromrepacking one

tape to the much simpler task of repacking �les.

We bene�t from the fact that the �les are automatically defragmentated

63

Chapter 7. The new Repack

by recalling them like a user, because the Stager cares aboutthe read-out

from tape and concatenation of all segments in case of a fragmented �le. This

implies that for each segment one tape has to be mounted and read. A de-

tailed analysis of how many �les are a�ected by this, is presented in Section 5.1.

5. As soon as the �les are copied to disk, they can be written back to a tape. It

is not necessary to know on which tape(s) we store the �les, aslong as they

belong to the same tape pool. The solution for this part is to use the same

mechanism as the normal case. Using the Migrator (see Section 2.3.5) saves

a lot of redundancy instead of rewriting this part (like it was in Repack I).

The tape pool information which is used by the Migrator to write the �les

to tape is kept in the ServiceClass table of the Stager catalogue. In fact, this

ServiceClass can be set by the Repack system which provides amechanism to

control the migration of �les.

To realize this step, the internal mechanism of the Stager has to be examined

and the e�ected parts changed. First idea: as soon as the �lesare written to

disk, mark them to be written to tape again.

6. After the �le has been written to tape, the new location of the �le has to

be updated in the NameServer. Since this procedure is not implemented, its

functionality has to be made up and a solution developed.

7. The last step is not really necessary, but as good manners,we send a command

to the Stager to remove the repacked �les from the diskcache to free space.

Normally the GarbageCollector runs and removes �les which are not accessed

anymore after a certain period of time.

64

Chapter 7. The new Repack

Stager

NameServer VMGR

Recall/Migrate filesRepackClient

4.stage files

6.remove files

store/update/
get Requests

 3.get segs

RepackServer

2.checks
 tape

1.
send Job

5. update file
location

RepackDB

Figure 7.3: Repack II interaction with a subset of CASTOR II

7.6 Low Level Design

After examining the high level design, this section introduces the detailed design

of the application. First, the data model is presented followed by the functionality

of the Repack components. The problems we discovered in the previous section are

considered and solutions are proposed.

7.6.1 The Data Model

The data model is necessary to specify the representation ofthe real world objects

like tapes and �les in the Repack system. These objects are designed using the Um-

brello UML Modeller and in combination with the service and converter framework

they can be sent through the network between Repack client and server as well as

stored in the database. But what kind of objects do we need?

First of all, a general request object which keeps some administrative information.

65

Chapter 7. The new Repack

These are basics like the machine name, the submitting user,creation time of the

request, etc. We de�ne theRepackRequestwith the following attributes:

- Machine, the machine name where the request is send

- Username, the username of the submitting user

- Creation time, the time when the request is created

- Pool, the pool name of a pool to be repacked

- Pid, the process id of the client

- ServiceClass, the Stager ServiceClass to be used when staging in the �les.

Secondly, an object for a tape to be repacked is to be created.It contains data

about aggregate size of all �les, the name of the tape, the number of �les, etc. From

the hierarchical point of view, it is lower than the RepackRequest, so we de�ne the

RepackSubRequestobject.

A RepackSubRequest contains the following information:

- Volume ID, the tapename (see Section 3.1)

- Xsize, the total size of the �les on tape

- Status, a number representing the status of this tape in thesystem

- FilesMigrating, the number of �les which are migrating

- FilesStaging, the number of �les which are staging

- Files, the total amount of �les on the tape

- FilesFailed, the number of �les where problems have occurred during tape-to-

disk or disk-to-tape copy process.

- Cuuid, a system uni�ed string, which identi�es the request

66

Chapter 7. The new Repack

A tape itself consists of many segments which have to be repacked. Therefore we

de�ne the RepackSegmentobject:

- Fileid, The �le id of the corresponding �le

- Segsize, the size of the segment

- Compression, the compression rate of the segment

- Filesec, the �le section (segment) number (if fragmented �le, this is > 1)

- Copyno, the tape copy number of the related �le.

All Objects inherit from the IObject class to be able to be used by the database and

stream converters (see Section 2.2.3).

The relationships in Figure 7.4 between the objects are important. A RepackSeg-

ment belongs to one RepackSubRequest and a RepackSubRequestcan have 1 to n

RepackSegments. It is the same for the RepackRequest and RepackSubRequest.

Taking into account that a �le can be fragmented and can consists of > 1 Repack-

Segments, we could design it as an object between RepackSubRequest and Repack-

Segment, too. But, from tape point of view we don't have �les only segments.

These three objects are modeled in Umbrello and hence code can to be generated by

the codegenerator. The table names correspond to the names of the classes without

their namespaces. The column names and column types of a table can be derived

from the appropriate variable names and the belonging associations. An association

column contains the unique row identi�cation number [id], which is stored in a 64

bit unsigned internal variable. The column for the unique idis automatically added

to the table and does not have to be explicitly inserted into the schema. All time

values are stored in seconds, which we count up from the FirstJanuary 1970.

67

Chapter 7. The new Repack

��������	��
����
����������	�
�
��������������
����
������������
�
����������	���
�����
�
������������
�����
�
�����������
�
�����������������
�
������������	�
�

������������
����������������
����
����������������
����
������	�����
����
�
�������������
�
������
�����
�

��������
����
�������
������	�
�
�����	���������	�
�
���	�����
 �������
���
�����
�
�����������	�
�
�������������
����
����	��������������	�
�

�����������
�������

��������	��
����	������
��	����������
����	�����
���������������
�	��
����������
���������

���������
���		�	!�������
�
���		�	������������	�
�

�	�"����#$

%&&

%

���'(�"����

%&&

%

������
�

	�"����#$

%

���'	�"����

Figure 7.4: The Repack data model

68

Chapter 7. The new Repack

7.6.2 The State Diagram

Since the RepackSubRequest is the representation of a tape in the Repack system

it is useful to set it to di�erent states, each standing for a process step. With this

in mind, Figure 7.5 shows the resulting states:

¤

¥ ¦ § ¨ © ¥ ¨

¤

ª

«

¤

ª ¬ ® ¯

°

± ²

§

± ³ ´ ± µ

¶

· ¸ ¸

¹

º ·

»

¤

¶

· ¼

¹

°

¼

½

¹ »

± µ

¾

§

± ¿ ·

» » À

Á

¹

¼ ¸ ·

¶

¹

Â

°

Ã

»

± ·

°

´
Ä

¤

¥ ¦ § ¨ © ¥ ¨

¤

ª

«

§ ¨ ¬ Å Æ ½ Ç §

¤

ª ¬ ® ¯

¤

¥ ¦ § ¨
©

¥ ¨

¤

ª

«

Á

®

§ ¬ ª ® ¯

¤

¥ ¦ § ¨
©

¥ ¨

¤

ª

«

§ ¨ ¬ Å Æ ½
Ç

§

Ã

È ¨ ¬ ¯ ¥ É

¤

¥ ¦ § ¨
©

¥ ¨

¤

ª

«

½ ® ¯ ®

¤

Ê ¨ Å

Ë

Ì

Í

Î Ï

¤

¥ ¦ § ¨
©

¥ ¨

¤

ª

«

¬ §

Ã

Ê ® Ð ¨ Å

Ñ

Ò

Ì
Ó

Ô Ì Î Õ Î Ö

Ò ×

Ø
Ì Ô Õ

Ë

Ì Ù Õ Ö

Ú
Û

Ó

Ü

Ë

Ì Ý
Ó

Ì Ô

Í

Ñ

Ò

Ì Î Ì Õ Î Ì Þ ß

à × á

Ì Ô

â

ã

Ò ×

Ö

Ò

Õ Î Ì Ô

Í

Õ ä

×

Þ ä ß Î å

×

ä Î Õ

Í

×

Þ ä

Ñ

Ò

Ì
Ó

Ô Ì Î Î Ì å ß
Ø

Ì Ô Õ

Ë

Ì Ù Õ Ö

Ú
Û

Ó

Ü

Ë

Ì Ý
Ó

Ì Ô

Í

à

Î ß å

Û

Ï
Ô

Í

Ì å

Figure 7.5: The states of a RepackSubRequest

7.6.3 Repack Client

The Repack client is designed to represent the Repack II system to the user. It

validates its commands, builds a request and, as shown in Figure 7.3, it sends it

to the Repack server. Being the View (see Section 7.4.1), it implements the use

cases from Section 7.1. As a result the parameters which can be passed to the client

69

Chapter 7. The new Repack

realize these use cases. The responsibility is limited but still the parameters have to

be validated. In fact, it represents theFacade patternfor the Repack II system [34].

Keeping it as simple as possible is one goal and therefore it is easily maintainable

and extendable.

The command line signature of the client is shown in Listing 7.1. An explanation

of the parameters is listed below.

repack -V VID1[:VID2..] [-o serviceclass]
-R VID1[:VID2..]
-P PoolID [-o serviceclass]
-S VID
-s
-a
-h

Listing 7.1: The signature of the Repack client

- VID the tape name to repack

- o the output ServiceClass (see Section 2.3.3)

- R remove a tape from the repack system

- P tape pool name

- S Status of one tape

- s Status of all tapes

- a Archive �nished tapes

- h Help

Creating the Request

A RepackRequest Object is created and, depending on the userparameter passed,

the command �eld in the RepackRequest is set. In case of repacking a tape, the

passed Volume ID is set in the RepackSubRequest VID �eld. If no target ServiceClass

(-o option) is speci�ed the default one is taken from the castor con�g �le on the

70

Chapter 7. The new Repack

server side. It is allowed to create a Repack process for morethan one tape in a

single request. This results in multiple ways to do a repack for the target tape pool.

1 tape to target pool

> 1 tapes from same tape pool to target pool

> 1 tapes from di�erent tape pools to target pool

Sending Request

After examining the parameters and validating the input, the request has to be

sent to the Repack server. For this we use the ClientSocket class which is already

provided in the project. It simply sends an IObject to a recipient and handles the

socket operations as well as errors (e.g. host not available).

Handling the Response

After sending the RepackRequest, the received response is checked for errors from

the server side. In case theerrorCode attribute of the RepackAck object is set the

related error message (MessageText) is shown to the user. In case of requesting a

detailed status of a tape in the Repack system, the response also contains information

about the related RepackRequest.

If no error occurs, a response (RepackAck object) with the RepackRequest from the

client is sent back by the server. Table 7.2 shows how the sentRepackRequest object

is used for the response.

Whenever an error occurs on the server side the errorCode number is set in the

received RepackAck object and the corresponding Message text is shown to the user.

In this case no RepackRequest (not even the original) is added to the response.

71

Chapter 7. The new Repack

Command RepackRequest Answer from server

V one RepackSubRequestsame,but RepackSubRequestupdated

to READYFORSTAGING

R one RepackSubRequestsame,without RepackSubRequest

s one RepackSubRequestboth replaced by the information found

in Repack DB

P no RepackSubRequest same, for each Tape found in given Pool

one RepackSubRequestis added

S no RepackSubRequest same, for each Tape found in Repack

System one RepackSubRequestis added

Table 7.2: Usage of the created RepackRequest object for queries and answers from

the server

7.6.4 Repack Server

This section deals with the server part of the new Repack system. We are introduced

to its modules and a description about their functionality.Further on we go into

detail and a workow of the interaction between these modules as well the Stager

is illustrated (see Figure 7.6).

The Repack server is the main application of the new Repack system. It contains the

logic and interacts with the Repack client(s). The detailedinternal design is based on

the repack process steps (see Section 7.5) and a clean separation of functional parts

into modules is necessary to support the idea of robustness against modi�cations.

The RepackServer class inherits from the castor::server::BaseServer class and starts

di�erent modules in thread pools each responsible for a stepin the Repack process.

It provides di�erent ways to run (eg. run in foreground or as adaemon). For the

correct execution some necessary information has to be entered in the CASTOR

con�g �le:

- STAGE HOST, the Stager hostname to contact for all activities (recalling,

staging)

72

Chapter 7. The new Repack

- CNS HOST, the NameServer hostname for �le information

- REPACK SVCCLASS, the ServiceClass which is used for default staging and

migrating �les (see Section 7.5)

- REPACK PROTOCOL, the transfer protocol which is used to copy �les from

and to tape

When the RepackServer class is instantiated, it �rst (in theconstructor) tries to

retrieve the information given in the CASTOR con�g �le. By default the Repack

system listens on port 62800. It can be changed by setting theenvironment variable

REPACK PORT to a valid value.

In case some necessary information is missing, the user getsa messages and the

program is aborted.

After this step the thread pools are created and started. As we see further on, this

information is requested by some modules for their use (Observer Pattern) [34].

The DatabaseHelper

The DatabaseHelper'stask is to decouple the database logic from the Repack logic

and thereby implement theBridge design pattern[34]. It inherits from DbBaseObj

and provides methods to access Repack objects in the underlying database. In detail,

the DbBaseObj class o�ers a service to do this. This service uses the autogenerated

Repack converter classes, which are not compiled in the shared library of CASTOR

and are therefore instantiated and registered separately whenever the Repack server

is loaded.

Repack Worker

At the very beginning of the process chain, whenever the request is received,

an instance is required which handles the incoming request as well as sending

back responses to the client. This is theRepackWorker. It inherits from the

73

Chapter 7. The new Repack

castor::server::IThread class and is started as a thread ina ListenerThreadPool

class (see Section 2.2.3). If the validation of an incoming object as a RepackRequest

is successful, its command �eld is checked and the corresponding action is executed.

The internal commands between Repack II client and server and a brief workow

of each is listed below:

REPACK The tape status is checked by querying the VMGR. If it is

marked as FULL the status of the RepackSubRequest is set to SUBRE-

QUEST READYFORSTAGING and the RepackRequest is stored in the

database. In case a poolname is given, the VMGR is queried forthe tapes in

this tape pool and they are added as new RepackSubRequest to the Repack-

Request. Of course they are also checked for their status. Ifan error occurs the

handling is aborted and the client receives an answer with anerror message.

GET STATUS The RepackSubRequest with the given volume ID is looked up in

the database and if it is successful, the RepackSubRequest sent by the client

is replaced by the one which was found.

GET STATUS ALL All RepackSubRequest which are not archived are retrieved

from database and added to the RepackRequest which was sent by the client.

ARCHIVE The RepackSubRequest in SUBREQUESTFINISHED are set to

SUBREQUEST ARCHIVED.

REMOVE The RepackSubRequest in SUBREQUESTSTAGING and SUBRE-

QUEST READYFORCLEANUP.

Repack File Stager

For the recall part, we de�ne the second module: theRepackFileStager

class. Its task is to retrieve a RepackSubRequest from the DBin status

SUBREQUEST READYFORSTAGING, get the �lenames from the NameServer

and send a request to the Stager. We only want to store the �leson the diskcache,

74

Chapter 7. The new Repack

but not to receive them on our system. CASTOR II o�ers such a request for this

purpose. TheStagePrepareToGetRequestcauses the Stager to copy the requested

�les from tape only to a diskserver, without a subsequent transfer to the client.

The following description refers to Listing 7.2.

The request is created (line 06) and the StagerSubRequests, each containing a

�lename, are added to it (line 12-23). The Stager SubRequestrepresents the request

for exactly one �le. Later on in Section 7.5 this object is important for the internal

CASTOR II mechanism.

Finally the StagePrepareToGetRequest is sent to the Stagerhost and the returned

CUUID replaces the one from the RepackSubRequest.

The response of the Stager depends on the amount of �les whichare sent. In

case of for example 2000 �les it takes about 30 seconds, depending on the load

of the Stager. The RepackFileStager will not store the RepackRequest with the

RepackSegments in the database as long as it does not receivethe response. This is

because the returned CUUID replaces the RepackRequest one.It is needed to keep

track of the status of the submitted �les. This is described in Section 7.6.4.

1 // get a tape
2 sreq =
3 m_dbhelper->checkSubRequestStatus(SUBREQUEST_READYF ORSTAGING);
4 ...
5 castor::Stager::StagePrepareToGetRequest req;
6 std::vector<std::string> * filelist =
7 m_filehelper->getFilePathnames(sreq,cuuid);
8
9 std::vector<std::string>::iterator filename = filelist ->begin();

10
11
12 while (filename != filelist->end()) {
13 castor::Stager::SubRequest * subreq =
14 new castor::Stager::SubRequest();
15 subreq->setFileName((* filename));
16 // this marks the Request as a 'special' one.
17 subreq->setRepackVid(sreq->vid());
18 // specify a protocol, otherwise the call is not scheduled
19 subreq->setProtocol(ptr_server->getProtocol());
20 subreq->setRequest(&req);
21 req.addSubRequests(subreq);
22 filename++;
23 }
24
25 // we create the Stager options

75

Chapter 7. The new Repack

26 sendStagerRepackRequest(&req, &reqId, &opts);
27 ...
28 sreq->setCuuid(reqId);

Listing 7.2: The creation of the request

The original Stager SubRequest object was extended by therepackVid �eld. This is

set here with the volume id of the tape to be repacked for lateruse in the Stager

logic. As is it explained in Section 7.7.3 this information is used to cause the Stager

to handle this �le request di�erently from the normal user one.

Repack Cleaner

The RepackCleaner�nishes a running repack process. It polls the database for

RepackSubRequest being in SUBREQUESTREADYFORCLEANUP status. If one

is retrieved the RepackCleaner removes the segment entriesin the Repack tables and

to set the RepackSubRequest to SUBREQUESTARCHIVED so it is not shown any-

more whenever a user lists the active repack processes (see Section 7.1). Additionally

the related �le pathnames are queried in the NameServer using the RepackSegment

information from the RepackSubRequest and are deleted fromthe diskserver. In

detail a remove request through the Stager API functionStagerrm is created and

sent to the Stager. As the �les are now marked to be deleted in the Stager catalogue,

the garbage collector daemon running on the e�ected diskserver removes the �les

and more free space becomes available.

This is not mandatory since the garbage collector removes �les whenever there is no

space left on the device.

Repack Monitor

The RepackMonitor is responsible for the synchronisation between the Stager and

the Repack system. Repack does not know when a �le was recalled or migrated.

But this information is needed to provide an overview to the user as well as

to control the status of a RepackSubRequest. In fact the RepackMonitor is the

instance which changes this state in the recall and migration phase. As soon as

76

Chapter 7. The new Repack

the StagePrepareToGetRequest was sent to the Stager the RepackSubRequest is

in SUBREQUEST STAGING (see Section 7.6.4). The RepackMonitor leaves it

in this status as long as there are no �les ready for migration. The �le status of

the RepackSubRequest is checked by querying the Stager through the Stager API

method stage�le query. To make the query the CUUID is used, which was stored

with the RepackSubRequest after sending it to the Stager (see Section 7.6.4). The

Stager sends an answer containing for each �le a Stager response with the �le

status. These number of �le in a status are cumulated by the RepackMonitor and

the RepackSubRequest updated.

As soon as at least one �le is ready for migration the status ofthe corresponding

RepackSubRequest is changed to SUBREQUESTMIGRATING. The statistic

stored with the RepackSubRequest (FilesMigrating, FilesStaging, FilesFailed)

shows the number of �les left in this state. There can be an inconsistency

between the total �les and the addition of �les in migration and recall state.

The explanation for this is the Garbage Collector of CASTOR II. It deletes the

migrated �les and therefore they are not listed anymore in the response of the Stager.

77

Chapter 7. The new Repack

Stager

NameServer migrator

VMGR

Repack Server

Recall/Migrate files

RepackFileStager DatabaseHelper

RepackWorker

RepackMonitorRepackCleaner

RepackClient

stage files

clean files

query

 update jobquery

store/update/
get Requests

store
segs

 store job get segs

validate tape

 send job

updates tapecopy

 updates

Repack DB

Figure 7.6: The detailed overview of Repack and its server components

7.7 The modi�ed CASTOR II Stager Workow

This section deals with the changes to the involved CASTOR IIcomponents which

are a�ected to allow and realize the correct workow of a Repack process. Those

components are listed at the beginning, followed by the a functional explanation

and their modi�cations.

It is intended to attach importance to this section, since itis required for a profound

understanding of Repack II concerning the internal mechanism of the Stager part.

7.7.1 The a�ected components

The following parts where changed to achieve the goal of repacking tapes.

78

Chapter 7. The new Repack

- The FILERECALLED PL/SQL procedure

- The ARCHIVE SUBREQUEST PL/SQL procedure

- The Stager SubRequest object (autogenerated by Umbrello)

- The CASTOR II Migrator

- The CASTOR II NameServer

Before going into details some, terminology has to be introduced. These are only

explained briey to give a better understanding of the context. For further details

please refer to the CASTOR documentation [35]. For the sake of completeness the

simpli�ed Stager Catalogue schema can be found in Appendix C.1.

DiskCopy A DiskCopy is the disk orientated representation of a �le in the Stager

Catalogue and can be in di�erent states, each starting with 'DISKCOPY '.

TapeCopy A TapeCopy is the tape orientated representation of a �le in the Stager

Catalogue and can be in di�erent states, each starting with 'TAPECOPY '.

SubRequest A SubRequest is the representation for a �le request int he Stager

Catalogue, see Section 7.6.4.

Example:

If a �le is going to be copied from tape to disk the �le's DiskCopy

status is DISKCOPY WAITTAPERECALL and its TapeCopy status is in

TAPECOPY TOBERECALLED.

7.7.2 Retrieving Files from Tape

The StagePrepareToGetRequest, sent by Repack II, triggersthe Stager to retrive

the �les from tape. The workow has been introduced in Section 2.3.4. In case of

two existing tapecopies of a �le of this request, it is not determined which tape is

79

Chapter 7. The new Repack

mounted to read the �le from. But this is not necessary since we just want to have

the �le's data.

The Recaller will keep the tape mounted as long as all �les were copied to disk.

As soon as a �le is copied from tape to disk, the Recaller executes the

FILERECALLED PL/SQL procedure in the Stager database. By doing this

the corresponding entry in the DiskCopy table is set to DISKCOPY STAGED. This

is the point in the normal process chains where we have to change the behaviour.

We don't want the �le only to be staged, but directly to be written back to a new

tape. Also the corresponding Stager SubRequest status mustbe extended until the

Repack process is over.

The Migrator requires the diskcopy status in DISKCOPYCANBEMIGR and a

related tapecopy in TAPECOPY CREATED.

These steps are already implemented in thePUTDONEFUNC PL/SQL procedure

in the database. It is used for the use case a user puts a list of�les into CASTOR

II without closing the transfer process after each �le. The created diskcopies in the

database are set to DISKCOPYSTAGEOUT as soon as the �le is copied from the

users computer to the diskserver. If the user �nishes this multi-copy process, the sta-

tus of the related diskcopies in the database are set to DISKCOPY CANBEMIGR

and tapecopies in status TAPECOPYCREATED are created.

As seen from above, this is the behaviour which is needed to trigger the mi-

gration for the �les for a repack process. The recalled �le has to be set to

DISKCOPY STAGEOUT and the PUTDONEFUNC executed. The advantage of

this idea is clear. There is no additional Repack module for the migration part

necessary, which would make the application more complex. Instead, the decision is

done by the Stager and the �les are ready for migration as soonas they are staged

in. There is no delay in long request handling or synchronising operations between

Repack and the Stager, which would have been the case if Repack was responsible.

Still, it is important to handle the modi�cations precisely because they are also

used for the normal production environment. It has to be ensured that no side

80

Chapter 7. The new Repack

e�ects occur for the user recall and migration.

The involved PL/SQL functions, which have to be changed are FILERECALLED

and ARCHIVESUBREQ. The ARCHIVESUBREQ is invoked by the StagerJob

after the FILERECALLED. The changes in the FILERECALLED contains the

decision for the Stager whether the recalled �le is in a repack process or if it is a

normal user recall. For this decision, the repackVid information of the corresponding

Stager SubRequest is used. If this �eld is set, the recall is in a repack process and

the diskcopy status entry has to be set to DISKCOPYSTAGEOUT; the condition

for the PUTDONEFUNC function.

Figure 7.7 shows the time sequence when the two functions areexecuted in a

successfull recall process. At the end, the StagerJob is restarted and puts the

related SubRequest for the recalled �le to SUBREQUESTFINISHED by invok-

ing the PL/SQL function ARCHIVESUBREQ. If all SubRequests belonging to

one Stager request were handled, they are all put into SUBREQUEST ARCHIVED.

stagerJob

SubRequest 1
WAITTAPERECALL FINISHED ARCHIVED

SubRequest 2
WAITSUBREQUEST ARCHIVED

SubRequest 3
ARCHIVED

ARCHIVESUBREQ

t
start

RESTART

RESTART

RESTART

READY

READY

READY

recaller

2. Request
arrives

3. Request
arrives

WAITSUBREQUEST

Figure 7.7: Capture of the states of Stager SubRequests

A very important impact on this change is the consideration of handling two

tapecopies of a �le. The scenario is to repack two tapes, bothcontaining a tapecopy

of a �le. Repack sends a StagePrepareToGet request to the Stager for each. In the

actual design, the recall of the second tapecopy is ignored if the �rst one is already

scheduled. This is coherent since the user who sends the second recall request can

81

Chapter 7. The new Repack

use the �rst copy, which is already staged or in a recall process.

The problem for Repack occurs in the second phase when two tape copies have to

be created again for the migration. Normally the PUTDONEFUNC would insert

as many entries in the tapecopy table as are speci�ed in the Fileclass 2.3.2 the �le

belongs to. It can happen that more than two tapecopies are created, even if only

one tapecopy is to be repacked. The consequence is that the �le has more than

the allowed two tapecopies in the CASTOR system. This is one of the side e�ects,

which must be avoided.

The redesign is to add a special behaviour in a repack processcase. The FILERE-

CALLED procedure passes PUTDONEFUNC the number of active (not archived)

SubRequests with a valid repackVid �eld found in the catalogue, because they

represent the information to create a tapecopy of a �le. Figure 7.8 shows the

general internal handling of the tapecopy during a repack process for two tapecopies

of a �le. The dotted line between Recaller and the tapes implies that it is not

determined which tape is taken for the tape-to-disk copy process.

Repack

Tape 1

Tape 2

Tape 3

Tape 4

SubRequest

SubRequest

Stager

Repack
Tape 1

Repack
Tape 2

Diskserver

to be migrated

Tapecopy 1

Tapecopy 2

FileRecalled
PL/SQL

Diskcopy migratorrecaller

Tapecopy

to be recalled

4.triggers

t

1. send Request

2. checks

3.copy

5.creates

6.checks

7.copy

User

Figure 7.8: Repacking two tapecopies

82

Chapter 7. The new Repack

1 CREATEOR REPLACE PROCEDUREfileRecalled(..)
2 AS repackVid VARCHAR2(2048);
3 ...
4 SELECT DiskCopy.id, SubRequest.repackVid, CastorFile.id,..
5 INTO dci, repackVid, cfid,..
6 FROMTapeCopy, SubRequest, DiskCopy, CastorFile
7 WHERE...
8 -- set the diskcopy
9 UPDATEDiskCopy SET status = decode (repackVid, NULL,0, 6)

10 WHEREid = dci RETURNINGfileSystem INTO fsid;
11 IF repackVid IS NOT NULL THEN
12 SELECT count (*) INTO nbTC FROMsubrequest
13 WHEREsubrequest.castorfile = cfid
14 AND subrequest.repackvid IS NOT NULL
15 AND subrequest.status in (4,5,6);
16 internalputDoneFunc(cfid, fsId, 0, nbTC);
17 END IF;
18 ...

Listing 7.3: The changed PL/SQL procedure in the database

Listing 7.3 shows the new PL/SQL FILERECALLED procedure. In line 9 the

diskcopy is set to either DIKSCOPYSTAGED (0) or DISKCOPY STAGEOUT (6)

depending on the value in the repackVid �eld in the SubRequest. If it is set, other

SubRequests for Repack are looked up (line 12-15) and the corresponding amount

of tapecopies to create are passed to INTERNALPUTDONEFUNC (line 16). An

internal mechanism restarts the SubRequest handling and, after �nishing, the new

status is ARCHIVED. In fact, the Stager SubRequest should not be archived, be-

cause it belongs to a Repack process and has to exist as long asthe �le has not

been written to tape. Therefore its 'life' is extended by an additional state SUB-

REQUEST REPACK. A detailed diagram of the new Stager SubRequest states are

given in Figure 7.7. The importance of this change is explained in the migration

part, when this SubRequest is needed again to update the NameServer.

7.7.3 Copying Files back to Tape

The next step is the preparation for the migration part. The CASTOR II MigHunter

initiates this phase by checking frequently the Stager catalogue for �les to be written

to tape (their DiskCopy entries are in status DISKCOPYCANBEMIGR and at

least one tapecopy in TAPECOPYCREATED). It creates rows in the tableStreams

83

Chapter 7. The new Repack

according to the number of tape drives speci�ed in the ServiceClass and assigns the

tapecopies to them by inserting a row containing the tapecopy id and the created

stream id.

As soon as this is done the RTCPClientD starts for each streama Migrator instance.

Each submits a tape request to the VDQM1 and after the successful mount in a tape

drive, it sends the data to the assigned tape server via the RTCPD (see Section 2.10).

During the writing process the Migrator waits for the callback of the RTCP interface.

After succesful transfer of the �le it informs the VMGR to decrease the space left

on device by the �lesize. Of course the NameServer has to be updated with the

retrieved new segment information from the tape server.

The last step during the migration is the replacement of the old �le segment

attributes in the NameServer, invoked by the Migrator. It is the most important

one for Repack, because here the information about the old tapecopy of the �le

is removed and this action is not reversible. This functionality in the NameServer

was not available and therefore had to be implemented. As soon as the �le was

written to tape, the RTCPD returns the new location (tape volume id, �le sequence

number, blockid) of the new tapecopy. Until now, the Migrator does not have any

information, whether the segment attributes have to be added to the nameserver

(the usual case) or to replace another entry (the Repack case). These are two

di�erent scenarios and two di�erent NameServer calls.

The Migrator has the ability to access the Stager catalogue and hence is able to

check the repackVid �eld of the corresponding SubRequest entry.

1 UPDATEsubrequest SET subrequest.status = 11 --ARCHIVED
2 WHEREid =
3 (SELECT subrequest.id
4 FROMsubrequest, diskcopy,castorfile
5 WHEREdiskcopy.id = subrequest.diskcopy
6 AND diskcopy.status = 10 --CANBEMIGR
7 AND subrequest.status = 12 --SUBREQUEST_REPACK

1The volume id for migration is received from the VMGR

84

Chapter 7. The new Repack

8 AND diskcopy.castorfile = castorfile.id
9 AND castorfile.fileid = :1 --the id of the written file

10 AND subrequest.repackvid IS NOT NULL ANDROWNUM < 2)
11 RETURNINGsubrequest.id INTO :2

Listing 7.4: SQL statement for Migrator to check for repack process

Listing 7.4 shows the SQL Statement, which is executed by thecheckFileForRepack

Migrator function. If a valid entry for the �leid (passed thr ough PL/SQL parameter

1) exists, the entry of the repackVid �eld is returned and the Stager SubRequest

status set to ARCHIVED. This ensures that this SubRequest isnever taken any

more

If this is set, it calls the newCns replaceTapeCopyNameServer API function with

the �le ID, the tape to repack and the new tapecopy location. As the name of

the function suggests, it replaces a tapecopy entry in theCNS SEG METADATA

table in the NameServer database with the new �le segment information from the

tapeserver. To avoid another selection of this SubRequest it is set to ARCHIVED

whenever this statement is executed (line 1).

Figure 7.9 shows the activity diagram of the newCns replaceTapeCopyfunction

on the NameServer side. It reads the new segment attributes from the stream

and sets the tapecopy number to the one found in the NameServer database for

the old segments of the old tape. To remove all old entries thenew function

Cns get smd by copynois called to �rst retrieve and then to delete them.

The order of adding and removing segments is not reversible,since the constraints of

the NameServer database don't allow two entries for the same�le with the same copy

number. The function locks the �le entry at the beginning andsaves the changements

by committing the database connection when �nished.This guarantees that the

operations are done atomically and not other NameServer ins tance can

interfere .

85

Chapter 7. The new Repack

æ

ç è

é

ç

ê

ç ë ç ì í ç î

ï

ë ð

ñ

î ç

ò

ï

ó ô ç è ð ô

õ

ì ç

ï

ð

ö ÷

ï

ó ô ç è ð ô

õ

î

ø

í

ù

ç

æ

ñ

æ

ð í

ú û

æ

ç

ï

æ

é

ç

ê

ç ë ç ì í ç î

ï

ë

ñ

ð

æ

ð

ö ÷

ï

ó ô ç è ð ô

õ

ñ

æ

ð í

ú û

ë ç

ï ï

ó ô ç è ð ô

õ

î

ø

í

ù

ç

æ

ï

ð î ç

ò

æ

ç è

é

ç

ê

ç

÷

ë ç ì í ç î

ï

ë

æ

ç í ð

ê

ç ð

ö ÷

ï

ó ô ç è ð ô

õ

ñ

æ

ð í

ú û

é

î ë ç

æ

ï

ë ç ì í ç î

ï

ð

ñ

î ç

ò

ï

ó ô ç è ð ô

õ

Figure 7.9: The activity diagram of the new NameServer function

86

Chapter 8

Optimisation

Tape storage management should not be a bottleneck for a highrate of data input

into CASTOR II. If the resources are used well, a speed up for reading, as well as

writing �les can be achieved.

Discovering ine�ciencies in the current system, and suggesting improvements, is the

main purpose of this chapter. It is not intended to present implemented solutions,

but to give ideas for further development.

Fundamental for the the following ideas is Table 8.1. It shows the steps which are

necessary to get data from tape and their duration in seconds. The times are mea-

sured for a T9940B tape drive. The speci�cations in red indicate optimisations.

A request is started by sending a request for a tape to the VDQM, which schedules

it. After the library receives the mount request it puts the tape into the "Tape

load" phase. Before data can be read, the drive has to wind to the position of the

�le (head is positioned by FSEQ number 3.1.4). The data can now be read and the

tape rewound afterwards.

87

Chapter 8. Optimisation

Tape Status Time

Request for a tape to be mounted

in a drive

20-60 sec

Tape load

20-30 sec

Tape ready

about 45 sec

Drive head positioned

Read/Write data 1GB 20-30 sec 10GB 200sec

(estim. for 100MB/sec)

Tape rewinded
about 45 sec

Tape unload

Table 8.1: The tape handling times for a read/write job

8.1 De�nition of Read E�ciency

Adapting to the times presented above we can measure the reade�ciency by

de�ning the following equation:

read ef f iciency = pure data read time
administrative time

whereas

administrative time = time of completeread operation � pure data read time

If we manage to decrease the administrative time, the e�ciency increases. This

should be our goal.

88

Chapter 8. Optimisation

8.2 Tape Loading

Looking at the mount time a tape roboter needs for a tape (20-30 seconds) and

having the geometrical conditions of a library in mind, we see that this time is

mainly determined by the distance from the slot to the tape drive.

It is worth taking a look at this issue and discover, if it can be optimised.

An initial approach is to �nd a algorithm, which knows these geometrical conditions

and to �nd the closest drive to the tape slot. The informationabout free tape drives

is kept in the VDQM, which also reserves the drives for a request from CASTOR.

This is, therefore, the only instance where this functionality can be applied.

The tape library cannot ful�ll this idea since the VDQM is the main instance which

coordinates access to the tape drives.

This idea of an algorithm is mentioned here for completeness. It has not been de-

veloped further on, due to time manners.

8.3 Reading Files from Tape

The idea of optimising the reading of �les from tape was originally raised by

the problems of the CASTOR I implementation. For each �le request a tape is

mounted,read and unmounted, independed from other requestfor the same tape.

This has changed in CASTOR II. The Recaller delays the mount of tapes for read

until a sensible number of �les is requested. This is alreadyan improvement. In

the case of Repack a great number of �les are requested and therefore the time

reading a tape determines the time a repack process needs. Ofcourse shortening

this reading time is egliable, so a higher availability of drives for production is

provided.

Traditionally, �les have always been read back from a tape by�le sequence order.

This is still the case in CASTOR II, even for modern serpentine recording formats.

89

Chapter 8. Optimisation

This is far from optimal. The serpentine track arrangement removes the simple

access ordering of 'lowest �le sequence is always fastest toretrieve'. Instead, it

is necessary to calculate the distance from the beginning oftape (BOT) of the

�les, and to retrieve them in ascending order of this distance. This avoids needless

positioning of the tape, saving a great deal of drive time.

A simple example for the advantage of this optimisation can be seen in Figure 8.1.

The �le order in �le sequence is 1, 10, 15. Comparing the winding distance for this to

the e�ord for positioning by user blockid (solid green arrows), the advantage is visi-

ble. Reading the �les in order to their distance to BOT decreases even more winding.

BOT EOT

File 1
File 10 File 15

start reading

Tracks

positioning:
by FSEQ

by User BlockID

sorted in distance to BOT

winding efford:

Figure 8.1: Illustration of the advantage reading �les in distance to BOT

There is less winding of the tape, causes increases of the lifetime of the tape (see

Table 3.2 in Section 3.1.3).

Resulting from the cognitions above, an implementation of an algorithm to calcu-

late the distance to the BOT for the CASTOR Recaller part has to be developed.

90

Chapter 8. Optimisation

The Recaller is the only instance which can inuence the reading from tape. The

tape drive will not change the order. Before sending the positioning request to the

RTCPD the �les have to be ordered beginning with the lowestseek time. This seek

time and therefore the position on tape can be found by using the tape charac-

teristic information and the user blockid from the NameServer. Unfortunately the

positioning block id does not correspond to the real block idon the tape, since the

vendors of the tape drives do not allow to access this number.Therefore, we have

consider tape speci�c data. The listed tape properties below are a prerequisite for

this calculation:

- The total capacity in bytes tcap

- The used tracksetsutkset

- The default blocksizedefblocksize

The following calculations are pseudo C code. It is not intended to present correct

code, but to impart the idea and the leading steps to the reader.

� By dividing the total capacity by the used tracksets we get the capacity per

track [in bytes]

capacity per track = tcap
utkset

� Subsequently we get the number of blocks on one track for thistape by dividing

this capacity by the default block size of the tape:

blocksper track = capacity per track
defblocksize

� The resulting blockid on the track:

blockid on track = total blockid
blocks per track

� We need the number of the track for the calculation of the direction in which

the data is read from tape. The result of the term can be 0, thisis why 1 is

added for the correct direction in the next step.

trackno = (int) total blockid
blocks per track + 1

direction =!(tracknomod2)

91

Chapter 8. Optimisation

� Depending on the direction of the head on track the position is expressed by

the percentage of the full track length. Since the idea is to calculate the time

from the BOT, we need a common denominator of the position fortime and

blocks on track.

if (direction == bot to eot)

percentageof track = 100:0� blockid on track
blocks per track

else

percentageof track = 100:0� (blocks per track � blockid on track)
blocks per track

� With this the seek time (in seconds) for the header block of the �le can be

derived by the following :

seek time = (int)min seektime + percentageof track �
max seektime � min seektime

100:0

Figure 8.2 shows an illustration of the parameters of the algorithm and the resulting

seek time.

Figure 8.2: Illustration of the parameters seek time algortithm

92

Chapter 8. Optimisation

Some tests made with STK 9940B for a set of 20 �les selected at random from a

LTO-3 tape [36].

- 825 seconds to access header data of these �les in random order

- 800 seconds to access header data of these �les in �le sequence order

- 300 seconds to access header data of these �les in distance from BOT order

There appears to be almost no 'penalty' for changing head positions vertically (ie

moving between tracksets) or reversing direction of read. This test did not consider

the sizes of the �les (a large �le will inuence the choice of next �le to read) or

their compressibility. Nevertheless, the results show that there is considerable room

for optimisation of multi-�le reads.

This implementation is done in the CtapesortSegments function and is executed

by the Recaller. The movement of the head is controlled by thetape drive and

therefore not accessible by higher level implementations.This is not a problem,

since we know from Section 3.1.4 that the tape drive always calculates the shortest

path from its actual position to the requested one.

As seen from above, this solution improves the performance for reading �les greatly,

but, there is more space for further optimisation. If the �lesize is taken in account,

the result is expected to be better. The idea is to search the next closest start

position of a list of �les after the last one. This is not handles here, but should be

considered for future developments.

8.4 Writing to Tape

An optimised writing of data to tape determines the reading of �les and is therefore

looking at it more closely. Small �les are a problem for CASTOR I and for

CASTOR II. They are expensive to handle and to repack. From Table 8.1 we

93

Chapter 8. Optimisation

see the loading, positioning and reversing times. The read e�ciency decreases for

small �les, because the pure reading time, compared to the aggegate time costs for

retrieving, is very small. In consequence, frequent requests for small �les degrade

response in retrieving large �les. However, any serpentinetape can in principle o�er

reasonably fast access times for such �les with almost STK 9840 like performance

[36]. These small �les should all be stored near the BOT region, so they are quickly

accessable.

As seen before (see Section 8.3), we are able to calculate thecapacity of one track

depending on the tape type.

Using this and the �le size information, an idea is to order the write sequence to

tape in a way that small �les are always written close to the BOT. This depend

where the tape drive starts to read. If a used tape is taken formigration, the

sorting algorithm has to take the �le information of the last �le in account to order

the new list. We cannot ask the drive, because it only returnslocation information,

when the data has been written.

If we manage to write small �les in the �rst 40GB the administrative time for

reading decreases and the e�ciency increases. Figure 8.3 illustrates this idea for a

400GB tape like the LTO-3.

Figure 8.3: Illustration of the advantage of sorting the order to write �les.

94

Chapter 9

Results

The results of the development of a new Repack application are presented in this

Chapter and a summery of the features is given.

A new application, Repack II, was developed and implemented. Changes to the

Stager workow and some CASTOR components have been made. With this new

system CASTOR is now able to repack tapes.

Repack II has not been proved under production conditions, but several tests with

the scenarios given by the possible Use Cases in Section 7.1 with ten tapes of

di�erent types assigned to four tape pools showed successfully its functionality. The

�les on the speci�ed tapes were correctly repacked without data corruption to the

target tape(s).

Problems like the double tapecopy handling in a repack process where discoverd

and solved in Section 7.7.2. Two tapes, each containing a copy of a �le, very

choosen and successfully repacked to two other tapes. It hasnot been tested with

more than two tapecopies, since this was never required for CASTOR.

The user in the following summery is related to be the tape operator.

95

Chapter 9. Results

Repack II is adapted to CASTOR II

The new Repack system uses the CASTOR II Stager API and is therefore fully

compliant with it.The CASTOR II MigHunter and Migrator deal with the disk-

to-tape copy process and can be tuned individually by the ServiceClasses used for

repacking �les.

Defragmentation of Files

Files are defragmentated in a repack process. The responsible CASTOR II Stager

concatinates the �le's segments when it is requested to be copied to disk (see second

step in Section 7.5). This major requirement has been ful�lled.

Multithreaded in C++

The multi-threaded request handling process from the Repack II server (Repack-

Worker, see Section 7.6.4) adopts to the current CASTOR II architecture and pro-

vides high availablity for its clients.

Robust against program crashes

Repack II is able to continue a repack process after the application has crashed.

The state of the process is kept in database and not in the memory. Therefore, the

Repack II server modules are stateless (see Section 7.4.1).

If the Repack server crashes during the submission of the initial Stager request,

it gets unsynchronised with the Stager and will send the Request again if it is

restarted. By having then two SubRequests in Stager Catalogue the FILERE-

CALLED PL/SQL would create another, not allowed, tape copy of all �les.

Therefore this part is still vulnerable and has to be improved. Other related problems

such as inuencing the stability of the Repack workow have not occurred.

96

Chapter 9. Results

Usage of DLF

Repack II uses the DLF for logging system messages. They are categorised in di�er-

ent levels of severity and the user can access, machine independently, these messages

through a web interface. They can be �ltered by several properties (e.g. severity,

time).

Monitored Repack Process

The repack process of a tape is monitored by the Repack II server (see Section 7.6.4).

The user can see the progress of one or all repacking tapes in the system. A history

is provided and accessable through the database.

Portablility

The implemented client-server architecture results in machine independence. Both

instancies can run on the same or di�erent (distributed) system.

Multiple ways to repack tapes

By de�ning the target tape(s) through the service class, theuser has multiple ways

to do a repack of a tape. The tape operator must know the ServiceClasses, in the

Stager Catalogue, and the tape pools linked to it, to repack the tape correctly. By

this 1..many source tape(s) can be repacked to 1..many target tapes. The tape type

may di�er.

Usage of Tape Drives is controlable

Since the Stager ServiceClass determines the number of drives and Repack II gives

the opportunity to choose the ServiceClass, the user gets control about the usage of

them. The speed of the repack process of course depends on theavailable hardware

(and tape drives). Fewer drives result in lower performance.

97

Chapter 9. Results

In the case of more than one allocated tape drive, and the target tapepool having

more than one tape, simultaneous copy is achievable.

Performance depends on available Hardware

The performance of the repack process is correlated to the available hardware and

their speci�cations. More disk servers and tape drives allow higher throughput of

data. The higher the throughput, the higher the speed of repacking tapes. Test

were done with only one diskserver and up to two tape drives. It turned out that

the diskserver is the bottleneck for the system, since the drives support more

throughout than the diskserver can a�ord.

It therefore makes not sence to have one disk server (max. 100MB/sec I/O) and

two tape drives (each 80MB/sec I/O), because the disk servercannot provide full

throughput load for both drives. Means, that the drive e�ciency decrease.

Independent from Media Type

Repack II is independent from the media type, because it delegates the task of

copying �les from/to tape to/from disk to the Stager logic. It is a high level imple-

mentation and does not deal with �le transfer or tape operations. In fact, it does not

know anything about the used hardware, but the API's to deal with (NameServer,

VMGR, Stager).

98

Chapter 10

Conclusion

Looking back at the development phase and the results of the devised application,

being described in the previous chapters, this chapter willpresent the experiences

that were made. A personal evaluation of the actual state of the development will

be given, as well as a brief description of its bene�ts and downsides.

The results from the previous chapters show that the newly developed Repack

system covers all requirements listed in Section 7.2. By defragmentating �les (if

necessary) during a repack process, future hardware intensive tape load operations

by the robotic tape libraries are avoided and lost tape spaceis recovered.

The client-server architecture of Repack II allows exibility and portability in

terms of running on di�erent machines in the same network. The tape operator can

submit and control Repack processes independently of the Repack server instance.

Since Repack II allows the unattended automated repackaging of a tape, operators

do not have to observe the process. Only in cases of an internal error, reported by

the DLF, does he have to intervene. This enables the operatorto concentrate on

other tasks. The usual case is to get the status of the runningRepack processes.

By using the Stager API, Repack II is robust against internalStager changes,

because the Stager API is rarely changed. This massive reusage of existing

functionality also makes the design of the application cleaner and it is, therefore,

99

Chapter 10. Conclusion

easier to maintain and extend. This is important since CASTOR II is used by and

can be changed by external institutes worldwide (see Chaper2). If a developer has

experience with its architecture, he is able to understand (and extend) Repack II

quickly.

Chapter 7.4.1 shows that storing information about a repackprocess in a highly

available database rather than in the memory of the new Repack application, en-

sures easy recovery after system crashes (harddisk failure, power cut, etc.), because

the data is not lost. The Repack logic does not participate inthe internal copy

process, which is outsourced to the Stager which uses highlyavailable hardware.

The use of the Distributed Logging Facility was not only a requirement for the

project, but was also very useful for debugging internal problems. Especially, if

they occur in multi-threaded applications like the Repack server is now.

The Optimisation chapter shows that there is space for improvement for reading

�les from tape. The presented ideas should be developed further and applied to

CASTOR. The optimisation of �le reading for example, results in less winding of

tape and therefore a higher life time of tapes is achieved. This has not been empiric

proven, but the theory shows that it has promise 8.3.

The way �les are written to tape inuences the time reading them back. The idea

of storing small �les close to the beginning of the tape, so the e�ciency increases,

is one example (see Section 8.4).

Repack II is expected to be in production soon. External institutes from Tier1 and

Tier2 have also requested it. They cannot use the old Repack,since most of them

run CASTOR II instances. They rely on the early release.

Personal Evaluation

Working in this �eld of scienti�c activity was an outstandin g experience for me.

The storage scenario at CERN is unique. Developing a new solution for such a

sensitive component as Repack, was intellectually stimulating for me. It gave me

the opportunity to deepen my knowledge about tape storage management and the

100

Chapter 10. Conclusion

related problems.

The responsiblity for creating a new application, which is used to support the work

of hundreds of scientists worldwide, was a greatly rewarding experience.

101

Chapter 10. Conclusion

102

Appendix A

Repack Class Diagram

103

A
pp

endix
A

.
R

epack
C

lass
D

iagram

ü ý þ

ÿ

� �

� �

� � � ý ü

�

� �

�

� � ý ü

�

�

� �

�

� �

	

�

�

�

�

�

�

� �

	

�

�

� � � �

�

�

�

�

� �

	

�

 � �

�

�

� �

�

�

�

�

�

�

�

� �

	

�

� � �

�

� � �

�

�

�

�

�

� �

	

�

� �

�

� �

�

� �

�

�

�

�

�

	

�

� �

� � �

� �

�

�

 �

�

�

�

�

�

�

� � � �

�

� �

�

� �

! "

�

#

�

� � � �

�

� �

�

� �

! "

�

� �

�

$

$

�
 �

! "

�

�

�

�

� �

�

� �

�

�

� � � �

$

�
 �

! "

�

�

�

�

� �

�

� �

�

� �

�

�

� �

�

�

�

! "

�

�

�

�

� �

�

� �

�

�

� �

�

� � �

� ! "

�

�

�

�

� �

�

� �

�

%

�

�

� �

�

� �

�

! "

�

�

�

�

�

� �

�

�

�

� �

�

�

 �

! "

�

�

�

�

ü ý þ

ÿ

� �

� �

þ � �

�

� �

� �

&

ý þ �

'

ý � (�)

ü ý þ

ÿ

� �

� �

� � � ý ü

�

� �

�

� � ý ü

�

*

+

� ý) � �

�

�

� � � �

�

�

�

� � � � �

! "

�

#

�

� � � �

�

�

�

� � � � �

! "

�

�

,

�

! "

�

�

� �

! "

	

�

�

� � �

,

�

�

� � �

! "

	

� �
 �

�

�

-

� �

�

-

� �

�

� � � �

! "

ü ý þ

ÿ

� �

� �

� � � ý ü

�

� �

'

ý

ÿ

ý

.

ý þ �

/

�

+

� � �

ü ý þ

ÿ

� �

� �

0 .

� �

'

.

&

ý þ �

1

. 2

ü ý þ

ÿ

� �

� �

� � � ý ü

�

� �

�

� � ý ü

�

3

4 +

�

�

ÿ

ý 5 � �

�

�

� � � �

�

-

� �

�

�

� � � �

! "

�

#

�

� � � �

�

-

� �

�

�

� � � �

! "

�

�

,

�

! "

�

�

� �

! "

	

 � �

6

�

� � � �

�

� � � �

�

�

� 7

,

�

�

! "

	

�

� � �

�

8 � �

�

! "

	

�

9

� �

�

:

,

�

�

�

�

� � � �

� ! "

ü ý þ

ÿ

� �

� �

þ � �

�

� �

� �

; <

=

� � ý

0

ü ý þ

ÿ

� �

� �

� � � ý ü

�

� �

�

� � ý ü

�

>

� �

�

� �

�

�

� � � �

�

?

� �

�

� �

! "

�

#

�

� � � �

�

?

� �

�

� �

! "

�

�

,

�

! "

�

�

� �

! "

	

9

� �

6 �

�

�

� � � �

� ! "

	

�

9

� �

�

�

� � �

-

� �

�

� � � �

� ! "

	

� � �

9 �

�

�

,

@

�

� 7

,

�

�

! "

	

� �

�

�

� �

�

A

�

8

�

! "

	

� �

�

�

� � �

�

�

�

,

! "

	

� �

�

�

�

�

,

! "

	

� �

�

�

�

�

,

B

� � ! "

ü ý þ

ÿ

� �

� �

� � � ý ü

�

� �

3

4 +

�

C

4

þ

ÿ

/

�

+

� � �

�

� �

�

-

� �

�

%

�

�

! "

�

� �

�

-

� �

�

%

�

�

� �

! "

�

� �

�

-

� �

�

�

�

�

9

� �
 �

! "

ü ý þ

ÿ

� �

� �

� � � ý ü

�

� �

�

� � ý ü

�

D

�)

4

ÿ

� �

�

�

� � � �

�

:

� �

�

�

� �

! "

�

#

�

� � � �

�

:

� �

�

�

� �

! "

�

�

,

�

! "

�

�

� �

! "

	

� �

�

-

�

�

�

9

�

6

�

� � �

! "

	

� �

�

�

�

�

!

 � � 7

�

�

� � � �

�

,

@

�

� 7

,

�

�

"

Figure A.1: The complete Repack class overview

104

Appendix B

Repack Sequence Diagram

A
pp

endix
B

.
R

epack
S

equence
D

iagram

E

F

G

H

G

I

G J K

L

K

M

N K O

E

P

K N G Q

R

S

T M

K

U

H

G V K O

E

S

T M

K

W

T

J

H

L

K

M

N K O

E

P

K N G Q

R

X

Y O

R

K O

E

P

K N G Q

R

Z

M T

K [

H

E

P

K N G Q

R

\

Y [

T

H

Y O

E

U

H

G V K O

E

P

K N G Q

R

Z

M

K G [K O

E

] \

^

P

_

E

J `

I

a

T

H

J

b

G N K

c

Y O

P

K N G Q

R

d

E

J

H

Y O K J

P

K e ` K J

H

f

E

N Y

M M

J

c

Y O [K g

h

Y

I

J

i

E

` N

j

G

H

K

P

K e ` K J

H

k

E

J K [

j

U

H

G V K O

P

K e ` K J

H

l

E

N Y

M M

J

c

Y O O ` [[

T

[V

h

Y

I

J

m

E

e ` K O n

c T M

K J

H

G

H

` J

_

o

E

` N

j

G

H

K

P

K e ` K J

H

p

E

V K

H

c T M

K N G

H

q

[G a K J

_ _

E

N Y

M M

J

c

Y O

c T

[

T

J

q

K

j

h

Y

I

J

_

d

E

J K [

j j

K

M

K

H

K O K e ` K J

H

_

r

E

V K

H

c T M

K N G

H

q

[G a K J

r

E

Q

q

K Q

R

b

G N K

Figure B.1: The complete Repack sequence digram

106

Appendix C

Stager Catalogue Schema

107

Appendix C. Stager Catalogue Schema

Figure C.1: The simpli�ed Stager Catalogue schema

108

Appendix D

CD Contents

� PDF of this thesis

� Source code of the CASTOR project

� PDF �les of the electronically available references

� All images used in this thesis

109

Appendix D. CD Contents

110

Appendix E

Glossary

ALICE - A Large Ion Collider Experiment at CERN's Large Hadrons Collider
API - Application Programming Interface
ATLAS - A Toroidal Large Hadrons Collider ApparatuS

BOT - Beginning Of Tape

CASTOR - CERN A dvancedSTOR age manager
CCM - Con�guration Cache Manager
CDB - Con�guration Data Base
CERN - European Organisation for Nuclear Research
CDR - Central Data Recording service
CMS - The Compact Muon Solenoid
CVS - Concurrent Versioning System

DLF - Distributed Logging Facility
DBMS - Database Management System

EOT - End Of Tape

FNAL - Fermi National Accelerator Laboratory

GridFTP - Grid File Transfer Protocol

HSM - Hierarchical Storage Management
IBM - Industrial Business Machines

111

Appendix E. Glossary

LCG - LHC Computing Grid project (Distributed Production En vironment
for Physics Data Processing)
LEMON - LHC Era Monitoring
LEP - Large Electron Positron collider
LHC - The Large Hadrons Collider
LHCb - The Large Hadrons Collider study of CP violation in B-meson decays
LTO - Linear Tape Open

Quattor - System Administration Toolsuite

RFIO - Remote File Input/Output
RTCPD - CASTOR Remote Tape Copy Daemon
RTCPClientD - CASTOR Remote Tape Copy Client Daemon

SAN - Storage Area Network
SLC - Scienti�c Linux Cern
STK - StorageTek

UML - Uni�ed Modelling Language

VDQM - CASTOR Volume and Drive Queue Manager
VMGR - CASTOR Volume Manager

XMI - XML Metadata Interchange
XML - Extensible Markup Language

112

Bibliography

[1] Hobbes Internet Timeline, Webpage,
http://www.zakon.org/robert/internet/timeline/

[2] CERN/LHCC "Technical Design Report", Presentation,
http://doc.cern.ch/archive/electronic/cern/preprint s/lhcc/public/lhcc-2005-019.pdf,
June 2005

[3] Les Robertson, "LCG Overview", Presentation,
http://les.web.cern.ch/les/talks/LCG%20Overview%20-%20aug06.ppt,
August 2006

[4] Castor Presentation at the Post C5 meeting, Presentation,
http://castor.web.cern.ch/castor/presentations/2006/Castor C5Presentation.pdf
June 2006

[5] COmmon Muon Proton Apparatus for Structure and Spectroscopy,
Webpage,http://wwwcompass.cern.ch/compass/

[6] CP Violation Experiment homepage, CERN,
Webpage,http://na48.web.cern.ch/NA48/Welcome.html

[7] Computer cluster,
Webpage,http://en.wikipedia.org/wiki/Computer cluster

[8] David A Patterson, Garth Gibson, and Randy H Katz, "A Casefor
Redundant Arrays of Inexpensive Disks (RAID)',
http://www2.cs.cmu.edu/ garth/RAIDpaper/Patterson88. pdf

[9] Bernd Panzer-Steindel, CERN, Presentation,"CASTOR2 performance
and reliability",
http://indico.cern.ch/getFile.py/access?contribId=1 4&sessionId=4
&resId=1&materialId=slides&confId=2916

113

Bibliography

[10] StreamLine SL8500 Modular Library System, Document,
http://www.storagetek.com/upload/documents/TC0018B SL8500OC.pdf,
December 2005

[11] IBM, "IBM System Storage TS3500 Tape Library", Document,
ftp://ftp.software.ibm.com/common/ssi/rep sp/n/
TSD00872USEN/TSD00872USEN.PDF

[12] Charles Curran, "Data Services Tape Service Scenario 2007", CERN,
Webpage, http://it-div-ds.web.cern.ch/it-div-ds/HO/t ape 2007.html,
August 2006

[13] Quattor, Webpage,http://quattor.org, December 2005

[14] German Cancio and Piotr Poznanski."Managing ComputerCentre
machines with Quattor", Presentation,
http://quattor.org/documentation/presentations/quat tor-c5-12122003.pdf,
December 2003

[15] Miroslav Siket, German Cancio, David Front, Maciej Stepniewsk. "Lemon
Monitoring" , Presentation,
http://lemon.web.cern.ch/lemon/doc/presentations/le mon-bologna-2005.ppt,
May 2005

[16] LHC Era Monitoring (Lemon), Webpage,http://cern.ch/lemon,
December 2005

[17] Umbrello UML Modeller, Webpage,http://umbrello.org, December 2005

[18] Object Management Group, UML 2.0, Webpage,
http://www.omg.org/technology/documents/formal/uml. htm

[19] SUN JavaBeans technology, Webpage,
http://java.sun.com/products/javabeans/ June,2006

[20] Olof B•arring, Ben Couturier, Jean-Damien Durand, Emil Knezo,
Sebastien Ponce, "Storage Resource Sharing with CASTOR",
Presentation,
http://castor.web.cern.ch/castor/presentations/2004/MSST2004/
MSST2004-CASTOR-1.pdf 2004

[21] Matthias Br•ager, "Redesign and Functional Extensionof the Robotic
Tape Queueing System within the CASTOR HSM", December 2005

114

Bibliography

[22] Ross N. Williams.. "A Painless Guide to CRC Error Detection
Algorithms", Webpage,http://www.ross.net/crc/downloa d/crc v3.txt,
August 1993

[23] P.Deutsch, J-L. Gailly, "ZLIB Compressed Data Format Speci�cation",
Document, http://www.ietf.org/rfc/rfc1950.txt

[24] Allan G. Reiter, "UNIVAC I Computer System",
Webpage,http://mywebpage.netscape.com/reitery2k/univac1.htm

[25] University Klagenfurt, "Magnetic Tape",
Webpage,http://cs-exhibitions.uni-klu.ac.at/index.php?id=221

[26] Linear Tape Open (LTO) The LTO, Webpage,http://www.lt o.org, Mai
2006

[27] Exabyte, "LTO Tape Drive RoadMap", Presentation

[28] H. Cacote, C. Curran, "IBM 3592 E05 tests", Presentation, December
2005

[29] V. Bahyl, H. Cacote, C. Curran , "STK T10000A tape drive",
Presentation, April 2006

[30] IBM TotalStorage 3592 Tape Drive Model J1A, Webpage,
http://www.nctgmbh.de/download/3592TapeDriveModelJ1A.pdf,
December 2005

[31] Novastor TapeCopy, Webpage,
http://interchange.novastor.com/datasheets/tapecopy.html

[32] IBM Tioli Tape Optimizer, Webpage,
http://www-306.ibm.com/software/tivoli/products/tap e-optimizer-zos/

[33] C.Curran, "Data Services Testing of IBM 3592 drives andIBM 3584
robot",
Webpage,http://it-div-ds.web.cern.ch/it-div-ds/HO/a cceptance.html

[34] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. "Design
Patterns: Elements of Reusable Object-Oriented Software",
Addison-Wesley, 1994

[35] The Castor Documentation,
Webpage,http://castor.web.cern.ch/castor/docs.htm

115

Bibliography

[36] C. Curran, CERN, "Data Services Tape Use Optimisations",
Webpage,http://it-div-ds.web.cern.ch/it-div-ds/HO/o ptimisations.html
2005

[37] C.Curran, J.� P.Baud, F.Collin, "Forum 2000� T9940A tests",
Presentation, 2000

116

	Introduction
	Thesis Overview
	Structure of this Document
	Validation of this Document
	Acknowledgement
	Prerequisites

	The Castor Project
	History
	General Overview
	Disk Servers
	Tape Libraries
	Technical Information

	Architecture
	The Components
	The Central Services
	The Stager Logic
	The Recall of Files
	The Migration of Files

	What is Repack?
	Introduction to Tapes
	History
	Current Use
	Organisation of Tapes
	Organisation of Files on Tapes

	The Reasons in Detail

	The old Repack
	Introduction
	Architecture

	Analysis and Design for a new Repack
	Limitation
	Requirements

	Alternative Solutions
	IBM Tivoli Tape Optimizer on z/OS
	Novastor TapeCopy
	Result
	Conclusion

	The new Repack
	Use Cases
	Requirements
	The Definition of a Repack Process
	Architecture
	Software Framework

	High Level Design
	Low Level Design
	The Data Model
	The State Diagram
	Repack Client
	Repack Server

	The modified CASTOR II Stager Workflow
	The affected components
	Retrieving Files from Tape
	Copying Files back to Tape

	Optimisation
	Definition of Read Efficiency
	Tape Loading
	Reading Files from Tape
	Writing to Tape

	Results
	Conclusion
	Repack Class Diagram
	Repack Sequence Diagram
	Stager Catalogue Schema
	CD Contents
	Glossary
	Bibliography

